This code extends the neural style transfer image processing technique to video by generating smooth transitions between several reference style images

Overview

Neural Style Transfer Transition Video Processing

By Brycen Westgarth and Tristan Jogminas

Description

This code extends the neural style transfer image processing technique to video by generating smooth transitions between a sequence of reference style images across video frames. The generated output video is a highly altered, artistic representation of the input video consisting of constantly changing abstract patterns and colors that emulate the original content of the video. The user's choice of style reference images, style sequence order, and style sequence length allow for infinite user experimentation and the creation of an endless range of artistically interesting videos.

System Requirements

This algorithm is computationally intensive so I highly recommend optimizing its performance by installing drivers for Tensorflow GPU support if you have access to a CUDA compatible GPU. Alternatively, you can take advantage of the free GPU resources available through Google Colab Notebooks. Even with GPU acceleration, the program may take several minutes to render a video.

Colab Notebook Version

Configuration

All configuration of the video properties and input/output file locations can be set by the user in config.py

Configurable Variable in config.py Description
ROOT_PATH Path to input/output directory
FRAME_HEIGHT Sets height dimension in pixels to resize the output video to. Video width will be calculated automatically to preserve aspect ratio. Low values will speed up processing time but reduce output video quality
INPUT_FPS Defines the rate at which frames are captured from the input video
INPUT_VIDEO_NAME Filename of input video
STYLE_SEQUENCE List that contains the indices corresponding to the image files in the 'style_ref' folder. Defines the reference style image transition sequence. Can be arbitrary length, the rate at which the video transitions between styles will be adjusted to fit the video
OUTPUT_FPS Defines the frame rate of the output video
OUTPUT_VIDEO_NAME Filename of output video to be created
GHOST_FRAME_TRANSPARENCY Proportional feedback constant for frame generation. Should be a value between 0 and 1. Affects the amount change that can occur between frames and the smoothness of the transitions.

The user must find and place their own style reference images in the style_ref directory. Style reference images can be arbitrary size. Three example style reference images are given.

Minor video time effects can be created by setting INPUT_FPS and OUTPUT_FPS to different relative values

  • INPUT_FPS > OUTPUT_FPS creates a slowed time effect
  • INPUT_FPS = OUTPUT_FPS creates no time effect
  • INPUT_FPS < OUTPUT_FPS creates a timelapse effect

Usage

$ python3 -m venv env
$ source env/bin/activate
$ pip3 install -r requirements.txt
$ python3 style_frames.py

Examples

Input Video

file

Example 1

Reference Style Image Transition Sequence

file

Output Video

file

Example 2

Reference Style Image Transition Sequence

file

Output Video

file

Example Video made using this program
Owner
Brycen Westgarth
Computer Engineering Student at UC Santa Barbara
Brycen Westgarth
Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more.

TextBlob: Simplified Text Processing Homepage: https://textblob.readthedocs.io/ TextBlob is a Python (2 and 3) library for processing textual data. It

Steven Loria 8.4k Dec 26, 2022
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition

CRNN paper:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 1. create your ow

Tsukinousag1 3 Apr 02, 2022
SDL: Synthetic Document Layout dataset

SDL is the project that synthesizes document images. It facilitates multiple-level labeling on document images and can generate in multiple languages.

Sơn Nguyễn 0 Oct 07, 2021
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

THUNLP-MT 46 Dec 15, 2022
Scene Text Retrieval via Joint Text Detection and Similarity Learning

This is the code of "Scene Text Retrieval via Joint Text Detection and Similarity Learning". For more details, please refer to our CVPR2021 paper.

79 Nov 29, 2022
Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech

epub2audiobook Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech Input examples qual a pasta do seu

7 Aug 25, 2022
Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.

Flexible interface for high performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra. What is Lightning Tran

Pytorch Lightning 581 Dec 21, 2022
Shirt Bot is a discord bot which uses GPT-3 to generate text

SHIRT BOT · Shirt Bot is a discord bot which uses GPT-3 to generate text. Made by Cyclcrclicly#3420 (474183744685604865) on Discord. Support Server EX

31 Oct 31, 2022
Sample data associated with the Aurora-BP study

The Aurora-BP Study and Dataset This repository contains sample code, sample data, and explanatory information for working with the Aurora-BP dataset

Microsoft 16 Dec 12, 2022
Scikit-learn style model finetuning for NLP

Scikit-learn style model finetuning for NLP Finetune is a library that allows users to leverage state-of-the-art pretrained NLP models for a wide vari

indico 665 Dec 17, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Dec 30, 2022
Checking spelling of form elements

Checking spelling of form elements. You can check the source files of external workflows/reports and configuration files

СКБ Контур (команда 1с) 15 Sep 12, 2022
An Open-Source Package for Neural Relation Extraction (NRE)

OpenNRE We have a DEMO website (http://opennre.thunlp.ai/). Try it out! OpenNRE is an open-source and extensible toolkit that provides a unified frame

THUNLP 3.9k Jan 03, 2023
DiY Oxygen Concentrator based on the OxiKit

M19O2 DiY Oxygen Concentrator based on / inspired by the OxiKit, OpenOx, Marut, RepRap and Project Apollo platforms. About Read about the project on H

Maker's Asylum 62 Dec 22, 2022
REST API for sentence tokenization and embedding using Multilingual Universal Sentence Encoder.

What is MUSE? MUSE stands for Multilingual Universal Sentence Encoder - multilingual extension (16 languages) of Universal Sentence Encoder (USE). MUS

Dani El-Ayyass 47 Sep 05, 2022
Unsupervised Language Modeling at scale for robust sentiment classification

** DEPRECATED ** This repo has been deprecated. Please visit Megatron-LM for our up to date Large-scale unsupervised pretraining and finetuning code.

NVIDIA Corporation 1k Nov 17, 2022
A linter to manage all your python exceptions and try/except blocks (limited only for those who like dinosaurs).

Manage your exceptions in Python like a PRO Currently in BETA. Inspired by this blog post. I shared the building process of this tool here. “For those

Guilherme Latrova 353 Dec 31, 2022
Official PyTorch implementation of SegFormer

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 29, 2022
LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating

LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating (Dataset) The dataset is from Amazon Review Data (2018)

Immanuvel Prathap S 1 Jan 16, 2022