This project uses unsupervised machine learning to identify correlations between daily inoculation rates in the USA and twitter sentiment in regards to COVID-19.

Overview

Twitter COVID-19 Sentiment Analysis

Members: Christopher Bach | Khalid Hamid Fallous | Jay Hirpara | Jing Tang | Graham Thomas | David Wetherhold

Project Overview

This project seeks to identify any correlation between ∆ daily inoculation rates and ∆ twitter sentiment surrounding COVID-19. We chose the pandemic as our topic because of it's societal relevance and implications as an ongoing event.

Analysis Methods

Integrated Database  

Extract CSV datasets from data sources (referenced above), transforming and cleaning them with Python, and loading the datasets using Amazon Web Services and PostgreSQL (server/database). This allows us to establish connection with our model, and store static data for use during the project.

  • Constructed as an Amazon RDS instance:
    • Connection Parameter: (covidsentiment.cqciwtn1qpki.us-east-2.rds.amazonaws.com)
    • Accessed with a password upon request

Further transformations:

Machine Learning Model

Next, implementing a natural language processing algorithm allows us to gather our sentiment analysis

  • Machine Learning Libraries: nltk, sklearn
  • Description of preliminary data preprocessing
  1. Load historical twitter covid vaccine data from kaggle.

  2. Clean tweets with clean_tweet function(regex), tokenize and get ready for text classification. Also, clean up function for removing hashtags, URL's, mentions, and retweets.

  3. Apply Textblob.sentiment.polarity and Textblob.sentiment.subjectivity, ready for sentiment analysis. textblob_polority_subjectivity

  4. Apply analyze_sentiment function on tweet texts to label texts with sentiment range from -1 (negative) to 1(positve). textblob_analyzer

  5. Plot top 10 words from postivie and negative-resulted words.

  • Description of preliminary feature engineering and preliminary feature selection, including their decision-making process
  1. Import CountVectorizerfrom sklearn.feature_extraction.text. CountVectorizer is a tool provided by the scikit-learn library in Python. It is used to transform a given text into a vector on the basis of the frequency (count) of each word that occurs in the entire text. The value of each cell is nothing but the count of the word in that particular text sample.
  2. Fit sentiment texts features with vectorizer, and target sentiment column.
  • Description of how data was split into training and testing sets Splitting into training and testing set so as to evaluate the classifier. The aim is to get an industry standard sample split of 80% train and 20% test.

  • Explanation of model choice, including limitations and benefits

  1. Naive Bayes classifier is a collection of many algorithms where all the algorithms share one common principle, and that is each feature being classified is not related to any other feature. The algorithm is based on the Bayes theorem and predicts the tag of a text such as a piece of email or newspaper article. It calculates the probability of each tag for a given sample and then gives the tag with the highest probability as output. The multinomial Naive Bayes classifier is suitable for classification with discrete features (e.g., word counts for text classification).Multinomial Naive Bayes algorithm is a probabilistic learning method that is mostly used in Natural Language Processing (NLP).
  2. Multinomial Naive Bayes classification algorithm tends to be a baseline solution for sentiment analysis task. The basic idea of Naive Bayes technique is to find the probabilities of classes assigned to texts by using the joint probabilities of words and classes.
  3. Naive Bayes algorithm is only used for textual data classification and cannot be used to predict numeric values. The result of naive bayes model provide statistical sense by predicting how often that certain words with the sentimental labels appear, which does not necessarily indicate the factual attitudes/sentiments towards covid vaccine, and it does not work with regression because it is not numerical data. One of the benefits of Naive Bayes is that if its assumption of the independence of features holds true, it can perform better than other models and requires much less training data.
  • Changes of model choice from segment 2 to segment 3
  1. Vader Analysis: VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment analysis tool that is specifically attuned to sentiments expressed in social media. It uses a list of lexical features (e.g. word) which are labeled as positive or negative according to their semantic orientation to calculate the text sentiment. VADER not only tells about the Positivity and Negativity score but also tells us about how positive or negative a sentiment is. VADER Sentiment Analyzer: VADER_sentiment_analyzer VADER_sentiment_compound_scores

  2. Solution to limitations: We discovered the most common words appeared in our twitter dataset are associated with covid vaccines because we retrieved the data with covid vaccine as search terms. Textblob Polarity is float which lies in the range of [-1,1] where 1 means positive statement and -1 means a negative statement. Subjective sentences generally refer to personal opinion, emotion or judgment whereas objective refers to factual information. Subjectivity is also a float which lies in the range of [0,1]. We are trying to process text classification with another function to get more accurate sentiment labels on the tweet texts.

  • Changes from segment 3 to segment 4
  1. Added sentiment "NLTK" which is a votes based combined algorithm encompassing multiple natural language processing techniques.

Regression Results

2 Factor Regression 2 Factor Regression

  1. Initial regressions were positive, with an r^2 value of .29

However, the p value for Textblob was very high, so we removed it:

1 Factor Regression 1 Factor Regression

  1. with one factor removed, the r^2 was still .29, but the p value was 0.000, indicating excellent results.

However, these correlations were against cumulative administration rates. We disaggregated the cumulation and re-ran the regression with 2 factors:

2 Factor Regression - Marginal 2 Factor Regression - Marginal

and the R^2 dropped to close to zero. p-values are corresondingly high.

Dashboard COVID-19 DASHBOARD

  • A blueprint for the dashboard is created and includes all of the following:
  • Storyboard on Google Slide(s)
  • Description of the tool(s) that will be used to create final dashboard
  • Description of interactive element(s)

Presentation

  • Selected topic
  • Why we selected our topic
  • Description of our source of data
  • Questions we hope to answer with the data
  • Description of the data exploration phase of the project
  • Description of the analysis phase of the project
  • Limitations and solutions

Challenges and Limitations

Problems
  • Facebook, Instagram and TikTok were all considered initially, but did not have the necessary data readily available.
  • Some members ran into issues with gaining Academic Twitter accounts to be able to access the Twitter API.
  • After gaining access to tweets our original goal of using the location of tweets was not possible due to most tweets not having geotag data
  • The Twitter API was very limited to the amount of data we could pull. Alternative dataset will be needed.
  • Group ran into a machine learning natural language paradox, where we noticed an issue within our sentiment analysis. When analyzing tweets for Covid-19 Vaccination sentiment (pro/anti-vaccine) when running into a tweet such as “I hate anti-vaxxers”, this would return a negative sentiment when this person is actually pro-vaccine.
  • Using academic accounts only allows access back to 7 days of tweets. We could not get twitter's full archive search without having a twitter scholar account.

Solutions
  • The group decided to use Twitter since it's API was available after submitting applications.
  • Members had to submit extra information to the Twitter developers platform to qualify for academic research accounts
  • Due to lack of geodata, the team decided to switch to using twitter sentiment over time, rather than region
  • The group decided to use a Kaggle Dataset, which provided us with tweets from December 21, 2020.
A Chinese to English Neural Model Translation Project

ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C

Zhenbang Feng 29 Nov 26, 2022
Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Ubiquitous Knowledge Processing Lab 748 Jan 06, 2023
Deep Learning for Natural Language Processing - Lectures 2021

This repository contains slides for the course "20-00-0947: Deep Learning for Natural Language Processing" (Technical University of Darmstadt, Summer term 2021).

0 Feb 21, 2022
To be a next-generation DL-based phenotype prediction from genome mutations.

Sequence -----------+-- 3D_structure -- 3D_module --+ +-- ? | |

Eric Alcaide 18 Jan 11, 2022
PyTorch Implementation of the paper Single Image Texture Translation for Data Augmentation

SITT The repo contains official PyTorch Implementation of the paper Single Image Texture Translation for Data Augmentation. Authors: Boyi Li Yin Cui T

Boyi Li 52 Jan 05, 2023
CrossNER: Evaluating Cross-Domain Named Entity Recognition (AAAI-2021)

CrossNER is a fully-labeled collected of named entity recognition (NER) data spanning over five diverse domains (Politics, Natural Science, Music, Literature, and Artificial Intelligence) with specia

Zihan Liu 89 Nov 10, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
An open-source NLP research library, built on PyTorch.

An Apache 2.0 NLP research library, built on PyTorch, for developing state-of-the-art deep learning models on a wide variety of linguistic tasks. Quic

AI2 11.4k Jan 01, 2023
NLP Core Library and Model Zoo based on PaddlePaddle 2.0

PaddleNLP 2.0拥有丰富的模型库、简洁易用的API与高性能的分布式训练的能力,旨在为飞桨开发者提升文本建模效率,并提供基于PaddlePaddle 2.0的NLP领域最佳实践。

6.9k Jan 01, 2023
Py65 65816 - Add support for the 65C816 to py65

Add support for the 65C816 to py65 Py65 (https://github.com/mnaberez/py65) is a

4 Jan 04, 2023
Accurately generate all possible forms of an English word e.g "election" --> "elect", "electoral", "electorate" etc.

Accurately generate all possible forms of an English word Word forms can accurately generate all possible forms of an English word. It can conjugate v

Dibya Chakravorty 570 Dec 31, 2022
Google's Meena transformer chatbot implementation

Here's my attempt at recreating Meena, a state of the art chatbot developed by Google Research and described in the paper Towards a Human-like Open-Domain Chatbot.

Francesco Pham 94 Dec 25, 2022
Simple python code to fix your combo list by removing any text after a separator or removing duplicate combos

Combo List Fixer A simple python code to fix your combo list by removing any text after a separator or removing duplicate combos Removing any text aft

Hamidreza Dehghan 3 Dec 05, 2022
SentAugment is a data augmentation technique for semi-supervised learning in NLP.

SentAugment SentAugment is a data augmentation technique for semi-supervised learning in NLP. It uses state-of-the-art sentence embeddings to structur

Meta Research 363 Dec 30, 2022
Practical Machine Learning with Python

Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system.

Dipanjan (DJ) Sarkar 2k Jan 08, 2023
Fake news detector filters - Smart filter project allow to classify the quality of information and web pages

fake-news-detector-1.0 Lists, lists and more lists... Spam filter list, quality keyword list, stoplist list, top-domains urls list, news agencies webs

Memo Sim 1 Jan 04, 2022
Shellcode antivirus evasion framework

Schrodinger's Cat Schrodinger'sCat is a Shellcode antivirus evasion framework Technical principle Please visit my blog https://idiotc4t.com/ How to us

idiotc4t 27 Jul 09, 2022
Curso práctico: NLP de cero a cien 🤗

Curso Práctico: NLP de cero a cien Comprende todos los conceptos y arquitecturas clave del estado del arte del NLP y aplícalos a casos prácticos utili

Somos NLP 147 Jan 06, 2023
Application to help find best train itinerary, uses speech to text, has a spam filter to segregate invalid inputs, NLP and Pathfinding algos.

T-IAI-901-MSC2022 - GROUP 18 Gestion de projet Notre travail a été organisé et réparti dans un Trello. https://trello.com/b/X3s2fpPJ/ia-projet Install

1 Feb 05, 2022
A Python script that compares files in directories

compare-files A Python script that compares files in different directories, this is similar to the command filecmp.cmp(f1, f2). I made this script in

Colvin 1 Oct 15, 2021