Code for text augmentation method leveraging large-scale language models

Overview

HyperMix

Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation.

Getting Started

Installing Packages

The main depedencies can be installed via pip install -r requirements.txt.

Usage

The main code is run through main.py. Check out --help for full list of commands.

python main.py --help

The code will automatically use the first GPU device, if detected.

A typical command to run BERT-base 10 times on the 1% subsample set of the SST-2 dataset and computing the average of all run is as follows.

python main.py --datasets sst2 \
    --train-subsample 0.01f \
    --classifier transformers \
    --model-name bert-base-uncased \
    --num-trials 1 \
    --augmenter none \
    --save-dir out

The script will create a directory named out in the current working directory and save the script log as out/run.log. It will also save any augmentations created during the experiments (if any augmentation is enabled).

To test GPT3Mix, prepare an OpenAI API key as described at the bottom of this README file, then use the following command:

python main.py --datasets sst2 \
    --train-subsample 0.01f \
    --classifier transformers \
    --model-name bert-base-uncased \
    --num-trials 1 \
    --augmenter gpt3-mix \
    --save-dir out

Managing Seeds

In the command above, the script will automatically generate seeds for sampling data and optimizing models. The seed used to generate each individual seed is called "master seed" and can be set using --master-data-seed and --master-exp-seed options. As evident from the option names, they are responsible for sampling data and optimizing a freshly initialized models respectively.

Sometimes, we need to manually set the seeds and not rely on automatically generated seeds from the master seeds. Manually seeding can be achieved via --data-seeds option. If this option is given, the master data seed will be ignored. We only support manualy data seeding for now.

OpenAI Key

Store OpenAI API Key under the current working directory as a file named openai-key. When running the main script, it will automatically detect the api key.

API keys can be provided to the script by --api-key option (not recommended) or from a file named openai-key in the current working directory.

Other Notes

At the moment we only support data augmentation leveraging OpenAI GPT-3 (GPT3Mix), but we will release an update that supports HyperCLOVA as soon as it becomes available to the public (HyperMix).

Citation

To cite our code or work, please use the following bibtex:

@inproceedings{yoo2021gpt3mix,
	title = "GPT3Mix: Leveraging Large-scale Language Models for Text Augmentation",
	author = "Yoo, Kang Min  and
	  Park, Dongju  and
	  Kang, Jaewook  and
	  Lee, Sang-Woo  and
	  Park, Woomyoung",
	booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
	month = nov,
	year = "2021",
	publisher = "Association for Computational Linguistics",
	url = "https://aclanthology.org/2021.findings-emnlp.192",
	pages = "2225--2239",
}
Owner
NAVER AI
Official account of NAVER AI, Korea No.1 Industrial AI Research Group
NAVER AI
Simple telegram bot to convert files into direct download link.you can use telegram as a file server 🪁

TGCLOUD 🪁 Simple telegram bot to convert files into direct download link.you can use telegram as a file server 🪁 Features Easy to Deploy Heroku Supp

Mr.Acid dev 6 Oct 18, 2022
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.

keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: Marketing Sea

Gagan Bhatia 364 Jan 03, 2023
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.6k Dec 27, 2022
Guide to using pre-trained large language models of source code

Large Models of Source Code I occasionally train and publicly release large neural language models on programs, including PolyCoder. Here, I describe

Vincent Hellendoorn 947 Dec 28, 2022
NLP Text Classification

多标签文本分类任务 近年来随着深度学习的发展,模型参数的数量飞速增长。为了训练这些参数,需要更大的数据集来避免过拟合。然而,对于大部分NLP任务来说,构建大规模的标注数据集非常困难(成本过高),特别是对于句法和语义相关的任务。相比之下,大规模的未标注语料库的构建则相对容易。为了利用这些数据,我们可以

Jason 1 Nov 11, 2021
Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5

NLP-Summarizer Natural language processing summarizer using 3 state of the art Transformer models: BERT, GPT2, and T5 This project aimed to provide in

Samuel Sharkey 1 Feb 07, 2022
Unsupervised Language Model Pre-training for French

FlauBERT and FLUE FlauBERT is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the n

GETALP 212 Dec 10, 2022
Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

CvarAdversarialRL Official code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning". Initial setup Create a virtual

Mathieu Godbout 1 Nov 19, 2021
SummerTime - Text Summarization Toolkit for Non-experts

A library to help users choose appropriate summarization tools based on their specific tasks or needs. Includes models, evaluation metrics, and datasets.

Yale-LILY 213 Jan 04, 2023
The simple project to separate mixed voice (2 clean voices) to 2 separate voices.

Speech Separation The simple project to separate mixed voice (2 clean voices) to 2 separate voices. Result Example (Clisk to hear the voices): mix ||

vuthede 31 Oct 30, 2022
NeoDays-based tileset for the roguelike CDDA (Cataclysm Dark Days Ahead)

NeoDaysPlus Reduced contrast, expanded, and continuously developed version of the CDDA tileset NeoDays that's being completed with new sprites for mis

0 Nov 12, 2022
Contains links to publicly available datasets for modeling health outcomes using speech and language.

speech-nlp-datasets Contains links to publicly available datasets for modeling various health outcomes using speech and language. Speech-based Corpora

Tuka Alhanai 77 Dec 07, 2022
The official repository of the ISBI 2022 KNIGHT Challenge

KNIGHT The official repository holding the data for the ISBI 2022 KNIGHT Challenge About The KNIGHT Challenge asks teams to develop models to classify

Nicholas Heller 4 Jan 22, 2022
NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT

NeuralQA: A Usable Library for (Extractive) Question Answering on Large Datasets with BERT Still in alpha, lots of changes anticipated. View demo on n

Victor Dibia 220 Dec 11, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline

Twitter-News-Summarizer Twitter bot that uses NLP models to summarize news articles referenced in a user's twitter timeline 1.) Extracts all tweets fr

Rohit Govindan 1 Jan 27, 2022
PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit.

PyKaldi is a Python scripting layer for the Kaldi speech recognition toolkit. It provides easy-to-use, low-overhead, first-class Python wrappers for t

922 Dec 31, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 37 Jan 04, 2023
The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

Kay Savetz 60 Dec 25, 2022
Application to help find best train itinerary, uses speech to text, has a spam filter to segregate invalid inputs, NLP and Pathfinding algos.

T-IAI-901-MSC2022 - GROUP 18 Gestion de projet Notre travail a été organisé et réparti dans un Trello. https://trello.com/b/X3s2fpPJ/ia-projet Install

1 Feb 05, 2022