ACL'22: Structured Pruning Learns Compact and Accurate Models

Overview

CoFiPruning: Structured Pruning Learns Compact and Accurate Models

This repository contains the code and pruned models for our ACL'22 paper Structured Pruning Learns Compact and Accurate Models.

**************************** Updates ****************************

  • 05/09/2022: We release the pruned model checkpoints on RTE, MRPC and CoLA!
  • 04/01/2022: We released our paper along with pruned model checkpoints on SQuAD, SST-2, QNLI and MNLI. Check it out!

Quick Links

Overview

We propose CoFiPruning, a task-specific, structured pruning approach (Coarse and Fine-grained Pruning) and show that structured pruning can achieve highly compact subnetworks and obtain large speedups and competitive accuracy as distillation approaches, while requiring much less computation. Our key insight is to jointly prune coarse-grained units (e.g., self-attention or feed-forward layers) and fine-grained units (e.g., heads, hidden dimensions) simultaneously. Different from existing works, our approach controls the pruning decision of every single parameter by multiple masks of different granularity. This is the key to large compression, as it allows the greatest flexibility of pruned structures and eases the optimization compared to only pruning small units. We also devise a layerwise distillation strategy to transfer knowledge from unpruned to pruned models during optimization.

Main Results

We show the main results of CoFiPruning along with results of popular pruning and distillation methods including Block Pruning, DynaBERT, DistilBERT and TinyBERT. Please see more detailed results in our paper.

Model List

Our released models are listed as following. You can download these models with the following links. We use a batch size of 128 and V100 32GB GPUs for speedup evaluation. We show F1 score for SQuAD and accuracy score for GLUE datasets. s60 denotes that the sparsity of the model is roughly 60%.

model name task sparsity speedup score
princeton-nlp/CoFi-MNLI-s60 MNLI 60.2% 2.1 × 85.3
princeton-nlp/CoFi-MNLI-s95 MNLI 94.3% 12.1 × 80.6
princeton-nlp/CoFi-QNLI-s60 QNLI 60.3% 2.1 × 91.8
princeton-nlp/CoFi-QNLI-s95 QNLI 94.5% 12.1 × 86.1
princeton-nlp/CoFi-SST2-s60 SST-2 60.1% 2.1 × 93.0
princeton-nlp/CoFi-SST2-s95 SST-2 94.5% 12.2 × 90.4
princeton-nlp/CoFi-SQuAD-s60 SQuAD 59.8% 2.0 × 89.1
princeton-nlp/CoFi-SQuAD-s93 SQuAD 92.4% 8.7 × 82.6
princeton-nlp/CoFi-RTE-s60 RTE 60.2% 2.0 x 72.6
princeton-nlp/CoFi-RTE-s96 RTE 96.2% 12.8 x 66.1
princeton-nlp/CoFi-CoLA-s60 CoLA 60.4% 2.0 x 60.4
princeton-nlp/CoFi-CoLA-s95 CoLA 95.1% 12.3 x 38.9
princeton-nlp/CoFi-MRPC-s60 MRPC 61.5% 2.0 x 86.8
princeton-nlp/CoFi-MRPC-s95 MRPC 94.9% 12.2 x 83.6

You can use these models with the huggingface interface:

from CoFiPruning.models import CoFiBertForSequenceClassification
model = CoFiBertForSequenceClassification.from_pretrained("princeton-nlp/CoFi-MNLI-s95") 
output = model(**inputs)

Train CoFiPruning

In the following section, we provide instructions on training CoFi with our code.

Requirements

Try runing the following script to install the dependencies.

pip install -r requirements.txt

Training

Training scripts

We provide example training scripts for training with CoFiPruning with different combination of training units and objectives in scripts/run_CoFi.sh. The script only supports single-GPU training and we explain the arguments in following:

  • --task_name: we support sequence classification tasks and extractive question answer tasks. You can input a glue task name, e.g., MNLI or use --train_file and --validation_file arguments with other tasks (supported by HuggingFace).
  • --ex_name_suffix: experiment name (for output dir)
  • --ex_cate: experiment category name (for output dir)
  • --pruning_type: we support all combinations of the following four types of pruning units. Default pruning type is structured_heads+structured_mlp+hidden+layer. Setting it to None falls back to standard fine-tuning.
    • structured_heads: head pruning
    • structured_mlp: mlp intermediate dimension pruning
    • hidden: hidden states pruning
    • layer: layer pruning
  • --target_sparsity: target sparsity of the pruned model
  • --distillation_path: the directory of the teacher model
  • --distillation_layer_loss_alpha: weight for layer distillation
  • --distillation_ce_loss_alpha: weight for cross entropy distillation
  • --layer_distill_version: we recommend using version 4 for small-sized datasets to impose an explicit restriction on layer orders but for relatively larger datasets, version 3 and version 4 do not make much difference.

After pruning the model, the same script could be used for further fine-tuning the pruned model with following arguments:

  • --pretrained_pruned_model: directory of the pruned model
  • --learning_rate: learning rate of the fine-tuning stage Note that during fine-tuning stage, pruning_type should be set to None.

An example for training (pruning) is as follows:

TASK=MNLI
SUFFIX=sparsity0.95
EX_CATE=CoFi
PRUNING_TYPE=structured_head+structured_mlp+hidden+layer
SPARSITY=0.95
DISTILL_LAYER_LOSS_ALPHA=0.9
DISTILL_CE_LOSS_ALPHA=0.1
LAYER_DISTILL_VERSION=4

bash scripts/run_CoFi.sh $TASK $SUFFIX $EX_CATE $PRUNING_TYPE $SPARSITY [DISTILLATION_PATH] $DISTILL_LAYER_LOSS_ALPHA $DISTILL_CE_LOSS_ALPHA $LAYER_DISTILL_VERSION

An example for fine_tuning after pruning is as follows:

PRUNED_MODEL_PATH=$proj_dir/$TASK/$EX_CATE/${TASK}_${SUFFIX}/best
PRUNING_TYPE=None # Setting the pruning type to be None for standard fine-tuning.
LEARNING_RATE=3e-5

bash scripts/run_CoFi.sh $TASK $SUFFIX $EX_CATE $PRUNING_TYPE $SPARSITY [DISTILLATION_PATH] $DISTILL_LAYER_LOSS_ALPHA $DISTILL_CE_LOSS_ALPHA $LAYER_DISTILL_VERSION [PRUNED_MODEL_PATH] $LEARNING_RATE

The training process will save the model with the best validation accuracy under $PRUNED_MODEL_PATH/best. And you can use the evaluation.py script for evaluation.

Evaluation

Our pruned models are served on Huggingface's model hub. You can use the script evalution.py to get the sparsity, inference time and development set results of a pruned model.

python evaluation.py [TASK] [MODEL_NAME_OR_DIR]

An example use of evaluating a sentence classification model is as follows:

python evaluation.py MNLI princeton-nlp/CoFi-MNLI-s95 

The expected output of the model is as follows:

Task: MNLI
Model path: princeton-nlp/CoFi-MNLI-s95
Model size: 4920106
Sparsity: 0.943
mnli/acc: 0.8055
seconds/example: 0.010151

Hyperparameters

We use the following hyperparamters for training CoFiPruning:

GLUE (small) GLUE (large) SQuAD
Batch size 32 32 16
Pruning learning rate 2e-5 2e-5 3e-5
Fine-tuning learning rate 1e-5, 2e-5, 3e-5 1e-5, 2e-5, 3e-5 1e-5, 2e-5, 3e-5
Layer distill. alpha 0.9, 0.7, 0.5 0.9, 0.7, 0.5 0.9, 0.7, 0.5
Cross entropy distill. alpha 0.1, 0.3, 0.5 0.1, 0.3, 0.5 0.1, 0.3, 0.5
Pruning epochs 100 20 20
Pre-finetuning epochs 4 1 1
Sparsity warmup epochs 20 2 2
Finetuning epochs 20 20 20

GLUE (small) denotes the GLUE tasks with a relatively smaller size including CoLA, STS-B, MRPC and RTE and GLUE (large) denotes the rest of the GLUE tasks including SST-2, MNLI, QQP and QNLI. Note that hyperparameter search is essential for small-sized datasets but is less important for large-sized datasets.

Bugs or Questions?

If you have any questions related to the code or the paper, feel free to email Mengzhou ([email protected]) and Zexuan ([email protected]). If you encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!

Citation

Please cite our paper if you use CoFiPruning in your work:

@inproceedings{xia2022structured,
   title={Structured Pruning Learns Compact and Accurate Models},
   author={Xia, Mengzhou and Zhong, Zexuan and Chen, Danqi},
   booktitle={Association for Computational Linguistics (ACL)},
   year={2022}
}
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
Toward a Visual Concept Vocabulary for GAN Latent Space, ICCV 2021

Toward a Visual Concept Vocabulary for GAN Latent Space Code and data from the ICCV 2021 paper Sarah Schwettmann, Evan Hernandez, David Bau, Samuel Kl

Sarah Schwettmann 13 Dec 23, 2022
Tensorflow implementation of paper: Learning to Diagnose with LSTM Recurrent Neural Networks.

Multilabel time series classification with LSTM Tensorflow implementation of model discussed in the following paper: Learning to Diagnose with LSTM Re

Aaqib 552 Nov 28, 2022
Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Adversarial Purification with Score-based Generative Models by Jongmin Yoon, Sung Ju Hwang, Juho Lee This repository includes the official PyTorch imp

15 Dec 15, 2022
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

THUNLP-MT 46 Dec 15, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
This repository contains helper functions which can help you generate additional data points depending on your NLP task.

NLP Albumentations For Data Augmentation This repository contains helper functions which can help you generate additional data points depending on you

Aflah 6 May 22, 2022
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
Anomaly Detection 이상치 탐지 전처리 모듈

Anomaly Detection 시계열 데이터에 대한 이상치 탐지 1. Kernel Density Estimation을 활용한 이상치 탐지 train_data_path와 test_data_path에 존재하는 시점 정보를 포함하고 있는 csv 형태의 train data와

CLUST-consortium 43 Nov 28, 2022
Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

UlionTse 907 Dec 27, 2022
A PyTorch-based model pruning toolkit for pre-trained language models

English | 中文说明 TextPruner是一个为预训练语言模型设计的模型裁剪工具包,通过轻量、快速的裁剪方法对模型进行结构化剪枝,从而实现压缩模型体积、提升模型速度。 其他相关资源: 知识蒸馏工具TextBrewer:https://github.com/airaria/TextBrewe

Ziqing Yang 231 Jan 08, 2023
PIZZA - a task-oriented semantic parsing dataset

The PIZZA dataset continues the exploration of task-oriented parsing by introducing a new dataset for parsing pizza and drink orders, whose semantics cannot be captured by flat slots and intents.

17 Dec 14, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Facebook Research 6.4k Dec 27, 2022
Transformation spoken text to written text

Transformation spoken text to written text This model is used for formatting raw asr text output from spoken text to written text (Eg. date, number, i

Nguyen Binh 16 Dec 28, 2022
Spam filtering made easy for you

spammy Author: Tasdik Rahman Latest version: 1.0.3 Contents 1 Overview 2 Features 3 Example 3.1 Accuracy of the classifier 4 Installation 4.1 Upgradin

Tasdik Rahman 137 Dec 18, 2022
ElasticBERT: A pre-trained model with multi-exit transformer architecture.

This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any language

Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any

Little Endian 1 Apr 28, 2022
FewCLUE: 为中文NLP定制的小样本学习测评基准

FewCLUE: 为中文NLP定制的小样本学习测评基准

CLUE benchmark 387 Jan 04, 2023
Code for the paper "Flexible Generation of Natural Language Deductions"

Code for the paper "Flexible Generation of Natural Language Deductions"

Kaj Bostrom 12 Nov 11, 2022
Automated question generation and question answering from Turkish texts using text-to-text transformers

Turkish Question Generation Offical source code for "Automated question generation & question answering from Turkish texts using text-to-text transfor

Open Business Software Solutions 29 Dec 14, 2022
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The goal is to create a single, flexible, and user-friendly toolkit that can be used to easily develop state-of-the-art speech technologies, including systems for speech recognition, speaker recognit

SpeechBrain 5.1k Jan 09, 2023