ACL'22: Structured Pruning Learns Compact and Accurate Models

Overview

CoFiPruning: Structured Pruning Learns Compact and Accurate Models

This repository contains the code and pruned models for our ACL'22 paper Structured Pruning Learns Compact and Accurate Models.

**************************** Updates ****************************

  • 05/09/2022: We release the pruned model checkpoints on RTE, MRPC and CoLA!
  • 04/01/2022: We released our paper along with pruned model checkpoints on SQuAD, SST-2, QNLI and MNLI. Check it out!

Quick Links

Overview

We propose CoFiPruning, a task-specific, structured pruning approach (Coarse and Fine-grained Pruning) and show that structured pruning can achieve highly compact subnetworks and obtain large speedups and competitive accuracy as distillation approaches, while requiring much less computation. Our key insight is to jointly prune coarse-grained units (e.g., self-attention or feed-forward layers) and fine-grained units (e.g., heads, hidden dimensions) simultaneously. Different from existing works, our approach controls the pruning decision of every single parameter by multiple masks of different granularity. This is the key to large compression, as it allows the greatest flexibility of pruned structures and eases the optimization compared to only pruning small units. We also devise a layerwise distillation strategy to transfer knowledge from unpruned to pruned models during optimization.

Main Results

We show the main results of CoFiPruning along with results of popular pruning and distillation methods including Block Pruning, DynaBERT, DistilBERT and TinyBERT. Please see more detailed results in our paper.

Model List

Our released models are listed as following. You can download these models with the following links. We use a batch size of 128 and V100 32GB GPUs for speedup evaluation. We show F1 score for SQuAD and accuracy score for GLUE datasets. s60 denotes that the sparsity of the model is roughly 60%.

model name task sparsity speedup score
princeton-nlp/CoFi-MNLI-s60 MNLI 60.2% 2.1 × 85.3
princeton-nlp/CoFi-MNLI-s95 MNLI 94.3% 12.1 × 80.6
princeton-nlp/CoFi-QNLI-s60 QNLI 60.3% 2.1 × 91.8
princeton-nlp/CoFi-QNLI-s95 QNLI 94.5% 12.1 × 86.1
princeton-nlp/CoFi-SST2-s60 SST-2 60.1% 2.1 × 93.0
princeton-nlp/CoFi-SST2-s95 SST-2 94.5% 12.2 × 90.4
princeton-nlp/CoFi-SQuAD-s60 SQuAD 59.8% 2.0 × 89.1
princeton-nlp/CoFi-SQuAD-s93 SQuAD 92.4% 8.7 × 82.6
princeton-nlp/CoFi-RTE-s60 RTE 60.2% 2.0 x 72.6
princeton-nlp/CoFi-RTE-s96 RTE 96.2% 12.8 x 66.1
princeton-nlp/CoFi-CoLA-s60 CoLA 60.4% 2.0 x 60.4
princeton-nlp/CoFi-CoLA-s95 CoLA 95.1% 12.3 x 38.9
princeton-nlp/CoFi-MRPC-s60 MRPC 61.5% 2.0 x 86.8
princeton-nlp/CoFi-MRPC-s95 MRPC 94.9% 12.2 x 83.6

You can use these models with the huggingface interface:

from CoFiPruning.models import CoFiBertForSequenceClassification
model = CoFiBertForSequenceClassification.from_pretrained("princeton-nlp/CoFi-MNLI-s95") 
output = model(**inputs)

Train CoFiPruning

In the following section, we provide instructions on training CoFi with our code.

Requirements

Try runing the following script to install the dependencies.

pip install -r requirements.txt

Training

Training scripts

We provide example training scripts for training with CoFiPruning with different combination of training units and objectives in scripts/run_CoFi.sh. The script only supports single-GPU training and we explain the arguments in following:

  • --task_name: we support sequence classification tasks and extractive question answer tasks. You can input a glue task name, e.g., MNLI or use --train_file and --validation_file arguments with other tasks (supported by HuggingFace).
  • --ex_name_suffix: experiment name (for output dir)
  • --ex_cate: experiment category name (for output dir)
  • --pruning_type: we support all combinations of the following four types of pruning units. Default pruning type is structured_heads+structured_mlp+hidden+layer. Setting it to None falls back to standard fine-tuning.
    • structured_heads: head pruning
    • structured_mlp: mlp intermediate dimension pruning
    • hidden: hidden states pruning
    • layer: layer pruning
  • --target_sparsity: target sparsity of the pruned model
  • --distillation_path: the directory of the teacher model
  • --distillation_layer_loss_alpha: weight for layer distillation
  • --distillation_ce_loss_alpha: weight for cross entropy distillation
  • --layer_distill_version: we recommend using version 4 for small-sized datasets to impose an explicit restriction on layer orders but for relatively larger datasets, version 3 and version 4 do not make much difference.

After pruning the model, the same script could be used for further fine-tuning the pruned model with following arguments:

  • --pretrained_pruned_model: directory of the pruned model
  • --learning_rate: learning rate of the fine-tuning stage Note that during fine-tuning stage, pruning_type should be set to None.

An example for training (pruning) is as follows:

TASK=MNLI
SUFFIX=sparsity0.95
EX_CATE=CoFi
PRUNING_TYPE=structured_head+structured_mlp+hidden+layer
SPARSITY=0.95
DISTILL_LAYER_LOSS_ALPHA=0.9
DISTILL_CE_LOSS_ALPHA=0.1
LAYER_DISTILL_VERSION=4

bash scripts/run_CoFi.sh $TASK $SUFFIX $EX_CATE $PRUNING_TYPE $SPARSITY [DISTILLATION_PATH] $DISTILL_LAYER_LOSS_ALPHA $DISTILL_CE_LOSS_ALPHA $LAYER_DISTILL_VERSION

An example for fine_tuning after pruning is as follows:

PRUNED_MODEL_PATH=$proj_dir/$TASK/$EX_CATE/${TASK}_${SUFFIX}/best
PRUNING_TYPE=None # Setting the pruning type to be None for standard fine-tuning.
LEARNING_RATE=3e-5

bash scripts/run_CoFi.sh $TASK $SUFFIX $EX_CATE $PRUNING_TYPE $SPARSITY [DISTILLATION_PATH] $DISTILL_LAYER_LOSS_ALPHA $DISTILL_CE_LOSS_ALPHA $LAYER_DISTILL_VERSION [PRUNED_MODEL_PATH] $LEARNING_RATE

The training process will save the model with the best validation accuracy under $PRUNED_MODEL_PATH/best. And you can use the evaluation.py script for evaluation.

Evaluation

Our pruned models are served on Huggingface's model hub. You can use the script evalution.py to get the sparsity, inference time and development set results of a pruned model.

python evaluation.py [TASK] [MODEL_NAME_OR_DIR]

An example use of evaluating a sentence classification model is as follows:

python evaluation.py MNLI princeton-nlp/CoFi-MNLI-s95 

The expected output of the model is as follows:

Task: MNLI
Model path: princeton-nlp/CoFi-MNLI-s95
Model size: 4920106
Sparsity: 0.943
mnli/acc: 0.8055
seconds/example: 0.010151

Hyperparameters

We use the following hyperparamters for training CoFiPruning:

GLUE (small) GLUE (large) SQuAD
Batch size 32 32 16
Pruning learning rate 2e-5 2e-5 3e-5
Fine-tuning learning rate 1e-5, 2e-5, 3e-5 1e-5, 2e-5, 3e-5 1e-5, 2e-5, 3e-5
Layer distill. alpha 0.9, 0.7, 0.5 0.9, 0.7, 0.5 0.9, 0.7, 0.5
Cross entropy distill. alpha 0.1, 0.3, 0.5 0.1, 0.3, 0.5 0.1, 0.3, 0.5
Pruning epochs 100 20 20
Pre-finetuning epochs 4 1 1
Sparsity warmup epochs 20 2 2
Finetuning epochs 20 20 20

GLUE (small) denotes the GLUE tasks with a relatively smaller size including CoLA, STS-B, MRPC and RTE and GLUE (large) denotes the rest of the GLUE tasks including SST-2, MNLI, QQP and QNLI. Note that hyperparameter search is essential for small-sized datasets but is less important for large-sized datasets.

Bugs or Questions?

If you have any questions related to the code or the paper, feel free to email Mengzhou ([email protected]) and Zexuan ([email protected]). If you encounter any problems when using the code, or want to report a bug, you can open an issue. Please try to specify the problem with details so we can help you better and quicker!

Citation

Please cite our paper if you use CoFiPruning in your work:

@inproceedings{xia2022structured,
   title={Structured Pruning Learns Compact and Accurate Models},
   author={Xia, Mengzhou and Zhong, Zexuan and Chen, Danqi},
   booktitle={Association for Computational Linguistics (ACL)},
   year={2022}
}
Owner
Princeton Natural Language Processing
Princeton Natural Language Processing
PyTorch Implementation of "Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging" (Findings of ACL 2022)

Feature_CRF_AE Feature_CRF_AE provides a implementation of Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging

Jacob Zhou 6 Apr 29, 2022
Espial is an engine for automated organization and discovery of personal knowledge

Live Demo (currently not running, on it) Espial is an engine for automated organization and discovery in knowledge bases. It can be adapted to run wit

Uzay-G 159 Dec 30, 2022
This Project is based on NLTK It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its antonyms, its synonyms

This Project is based on NLTK(Natural Language Toolkit) It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its

SaiVenkatDhulipudi 2 Nov 17, 2021
An open collection of annotated voices in Japanese language

声庭 (Koniwa): オープンな日本語音声とアノテーションのコレクション Koniwa (声庭): An open collection of annotated voices in Japanese language 概要 Koniwa(声庭)は利用・修正・再配布が自由でオープンな音声とアノテ

Koniwa project 32 Dec 14, 2022
Train 🤗transformers with DeepSpeed: ZeRO-2, ZeRO-3

Fork from https://github.com/huggingface/transformers/tree/86d5fb0b360e68de46d40265e7c707fe68c8015b/examples/pytorch/language-modeling at 2021.05.17.

Junbum Lee 12 Oct 26, 2022
초성 해석기 based on ko-BART

초성 해석기 개요 한국어 초성만으로 이루어진 문장을 입력하면, 완성된 문장을 예측하는 초성 해석기입니다. 초성: ㄴㄴ ㄴㄹ ㅈㅇㅎ 예측 문장: 나는 너를 좋아해 모델 모델은 SKT-AI에서 공개한 Ko-BART를 이용합니다. 데이터 문장 단위로 이루어진 아무 코퍼스나

Dawoon Jung 29 Oct 28, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Jan 08, 2023
Text to speech converter with GUI made in Python.

Text-to-speech-with-GUI Text to speech converter with GUI made in Python. To run this download the zip file and run the main file or clone this repo.

SidTheMiner 1 Nov 15, 2021
Codes for coreference-aware machine reading comprehension

Data and code for the paper "Tracing Origins: Coreference-aware Machine Reading Comprehension" at ACL2022. Dataset There are three folders for our thr

11 Sep 29, 2022
xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building blocks.

Description xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building bl

Facebook Research 2.3k Jan 08, 2023
Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
Club chatbot

Chatbot Club chatbot Instructions to get the Chatterbot working Step 1. First make sure you are using a version of Python 3 or newer. To check your ve

5 Mar 07, 2022
Use the state-of-the-art m2m100 to translate large data on CPU/GPU/TPU. Super Easy!

Easy-Translate is a script for translating large text files in your machine using the M2M100 models from Facebook/Meta AI. We also privide a script fo

Iker García-Ferrero 41 Dec 15, 2022
Translate U is capable of translating the text present in an image from one language to the other.

Translate U is capable of translating the text present in an image from one language to the other. The app uses OCR and Google translate to identify and translate across 80+ languages.

Neelanjan Manna 1 Dec 22, 2021
Training code for Korean multi-class sentiment analysis

KoSentimentAnalysis Bert implementation for the Korean multi-class sentiment analysis 왜 한국어 감정 다중분류 모델은 거의 없는 것일까?에서 시작된 프로젝트 Environment: Pytorch, Da

Donghoon Shin 3 Dec 02, 2022
wxPython app for converting encodings, modifying and fixing SRT files

Subtitle Converter Program za obradu srt i txt fajlova. Requirements: Python version 3.8 wxPython version 4.1.0 or newer Libraries: srt, PyDispatcher

4 Nov 25, 2022
Proquabet - Convert your prose into proquints and then you essentially have Vogon poetry

Proquabet Turn your prose into a constant stream of encrypted and meaningless-so

Milo Fultz 2 Oct 10, 2022
NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT

NeuralQA: A Usable Library for (Extractive) Question Answering on Large Datasets with BERT Still in alpha, lots of changes anticipated. View demo on n

Victor Dibia 220 Dec 11, 2022
Original implementation of the pooling method introduced in "Speaker embeddings by modeling channel-wise correlations"

Speaker-Embeddings-Correlation-Pooling This is the original implementation of the pooling method introduced in "Speaker embeddings by modeling channel

Themos Stafylakis 10 Apr 30, 2022