Python generation script for BitBirds

Overview

BitBirds generation script

Intro

This is published under MIT license, which means you can do whatever you want with it - entirely at your own risk.

Please don't be an asshole. This is, like, grassroots and stuff.

Specifically I'm asking you in good faith not to directly knock off the BitBirds project, or otherwise screw me over for sharing this. Do not use this for anything hateful or discriminatory.

There is a YouTube video walkthrough to complement this ReadMe ...Link....

Setting the expectations

If you're new to programming you may struggle to set up the dependencies. If you're persistent, you can do it! I believe in you.

Often in technology, setting up a pre-requisite like PIP (a python asset installation tool) isn't something the developer thinks about in a given project because it has been on their computer for months or years.

Even having set up a number of dependencies just a few weeks ago for this project, I don't remember exactly how I worked through the various error messages. When you try to run the script, if it fails there will often be some useful nugget of information buried in the cryptic response blob. As a rule for life - Google is your friend, and others have probably encountered your exact error message. When asking questions on discord, stackoverflow, or wherever, say very specifically (1) what you've tried (2) what you expect as the result and (3) what issue/error you're encountering. That'll get a lot more useful feedback than just shouting HALP.

Dependencies

The dependenices were all installed with the terminal/command line. There is documentation abound about terminal generally, and these tools specifically, but unfortunately I did not save copies of the web pages I used. From memory the things I needed to setup were:

  • Python 3 (default on my mac was python 2.7)

  • PIP - a command-line installation mechanism for python assets.

IIRC I needed to use some special command with python 3 to use pip as an installation mechanism for the items below- perhaps pip3 install ... rather than pip install ...?

  • Pillow - python library to generate images - installed via terminal/command-line with PIP

  • NumPy - python library to work with arrays - installed via terminal/command-line with PIP

  • I don't think I had to install the 'random' library (included in the script) to use the number-randomization feature, but might have.

If you encounter specific setup items I haven't mentioned here let me know, and I'll add them.

How this script works

The video I've put on YouTube complements this overview.

We are iterating through a 'loop' once for each bird. The loop starts with a 'seed number' that is used to deterministically generate pseudo-random numbers. I say 'deterministically' and 'pseudo-random' because from the same seed number the 'random' output will always be the same. It's not truly random in a security or mathematical sense. I used the most recent ETH block at the time as my seed number - 11981207.

There is then a 'chain' of additional random numbers generated that are used to define all of the various traits of the birds. Many of the attributes generate a random number between 1-1000 and use that for some sort of logical statement (e.g. to decide beak color).

Interestingly, the way I've used this random-number chain seems to have resulted in some specific behavior and combinations that I can't yet personally explain. For example the way the bird type selection random number and beak color selection random number chain from one another seems to have resulted in no red-beaked woodpeckers. I also noticed that all of the four cockatoos generated seemed to have the exact same blue crest. Because I wanted more variety than that, in the minted NFTs I ran another batch of cockatoos and replaced the second, third, and fourth cockatoos in the original sequence with others that provided more variety. I made no other changes to the randomly generated set of birds, and if you run the script yourself (without changing the seed) you should see identical matches for each number. If you spot a pattern in why the random numbers behave in this way, I would love to discuss on twitter or discord.

  • Head color and throat color are a random 1-255 number generated into each of the three RGB values in a color.
  • Eye color looks at a random number between 1-1000 and if it's 47 or less, will give the bird crazy eyes. Crazy eyes always have the same pupil color (154, 0, 0) and then generate a random color for the 'white of the eye,' in the same way the head and throat color are generated.
  • Beak color is determined by an evaluation of another 1-1000 'random' number. Grey is most common, gold is also common, red is rare, and black is very rare.

The bird images are 24x24 arrays of variables, representing every pixel in the final image. I've used variables with two letters for each type of pixel (e.g. outline ol, head color hd, beak color bk), so as to keep the 'matrix' of pixel variables easy to see and work with. If you zoom way out on the code you may even be able to see a rough picture of the birds in the code, just from the slight differences in the variables.

The script uses another 1-1000 'random' number to decide which of the bird type templates to use. Basic bird is most common, at about 75% probability. Jay has a 15% probability, woodpecker has 6%, eagle has 3.5%, and cockatoo has half a percent probability.

From there, you're just about home free. The final bit of the loop re-sizes the generated bird from 24x24 pixels up to 480x480 pixels. It generates the image file path (dynamically, wherever you have the folder using the os library), and saves the image into the included folder bird_images.

Then it goes right back to the top of the loop, and does it again for the next bird, until the number of defined loops is completed.

Wrap up

I sincerely hope this inspires someone to learn a new skill, take up coding, or generally expand their horizons! I won't profess to be a professional coder, but I am a technologist in my day job and have found it to be a fulfilling and rewarding life path. This BitBirds project has been a joy to be involved in. The community that has popped up around it already has been inspiring, and I'm excited to see it grow in the years to come.

If would like to show your thanks for this shared asset I'd encourage you to plant some trees! https://onetreeplanted.org/collections/all

If you feel absolutly compelled to send ETH or NFTs to me directly, please know that it is not necessary, but the BitBirds project hardware wallet address is: 0x1fd146a5e6152c5ACd3A013fBC42A243e4DfCe63

Thanks for everything!

Owner
BitBirds generation script!
This is a Prototype of an Ai ChatBot "Tea and Coffee Supplier" using python.

Ai-ChatBot-Python A chatbot is an intelligent system which can hold a conversation with a human using natural language in real time. Due to the rise o

1 Oct 30, 2021
SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors

SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors [Paper] [Project Website] Pytorch implementation for SAVI2I. We

Qi Mao 44 Dec 30, 2022
Arabic speech recognition, classification and text-to-speech.

klaam Arabic speech recognition, classification and text-to-speech using many advanced models like wave2vec and fastspeech2. This repository allows tr

ARBML 177 Dec 27, 2022
Telegram AI chat bot written in Python using Pyrogram

Aurora_Al Just another Telegram AI chat bot written in Python using Pyrogram. A public running instance can be found on telegram as @AuroraAl. Require

♗CσNϙUҽRσR_MҽSƙEƚҽҽR 1 Oct 31, 2021
Tokenizer - Module python d'analyse syntaxique et de grammaire, tokenization

Tokenizer Le Tokenizer est un analyseur lexicale, il permet, comme Flex and Yacc par exemple, de tokenizer du code, c'est à dire transformer du code e

Manolo 1 Aug 15, 2022
TensorFlow code and pre-trained models for BERT

BERT ***** New March 11th, 2020: Smaller BERT Models ***** This is a release of 24 smaller BERT models (English only, uncased, trained with WordPiece

Google Research 32.9k Jan 08, 2023
p-tuning for few-shot NLU task

p-tuning_NLU Overview 这个小项目是受乐于分享的苏剑林大佬这篇p-tuning 文章启发,也实现了个使用P-tuning进行NLU分类的任务, 思路是一样的,prompt实现方式有不同,这里是将[unused*]的embeddings参数抽取出用于初始化prompt_embed后

3 Dec 29, 2022
Using context-free grammar formalism to parse English sentences to determine their structure to help computer to better understand the meaning of the sentence.

Sentance Parser Executing the Program Make sure Python 3.6+ is installed. Install requirements $ pip install requirements.txt Run the program:

Vaibhaw 12 Sep 28, 2022
Türkçe küfürlü içerikleri bulan bir yapay zeka kütüphanesi / An ML library for profanity detection in Turkish sentences

"Kötü söz sahibine aittir." -Anonim Nedir? sinkaf uygunsuz yorumların bulunmasını sağlayan bir python kütüphanesidir. Farkı nedir? Diğer algoritmalard

KaraGoz 4 Feb 18, 2022
PyTorch implementation of the paper: Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding

Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding This repository contains the official PyTorch implementation of th

Xiao Xu 26 Dec 14, 2022
DeepSpeech - Easy-to-use Speech Toolkit including SOTA ASR pipeline, influential TTS with text frontend and End-to-End Speech Simultaneous Translation.

(简体中文|English) Quick Start | Documents | Models List PaddleSpeech is an open-source toolkit on PaddlePaddle platform for a variety of critical tasks i

5.6k Jan 03, 2023
AI-Broad-casting - AI Broad casting with python

Basic Code 1. Use The Code Configuration Environment conda create -n code_base p

🦅 Pretrained BigBird Model for Korean (up to 4096 tokens)

Pretrained BigBird Model for Korean What is BigBird • How to Use • Pretraining • Evaluation Result • Docs • Citation 한국어 | English What is BigBird? Bi

Jangwon Park 183 Dec 14, 2022
Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Jifan Chen 22 Oct 21, 2022
[WWW 2021 GLB] New Benchmarks for Learning on Non-Homophilous Graphs

New Benchmarks for Learning on Non-Homophilous Graphs Here are the codes and datasets accompanying the paper: New Benchmarks for Learning on Non-Homop

94 Dec 21, 2022
Python library to make development of portfolio analysis faster and easier

Trafalgar Python library to make development of portfolio analysis faster and easier Installation 🔥 For the moment, Trafalgar is still in beta develo

Santosh Passoubady 641 Jan 01, 2023
NewsMTSC: (Multi-)Target-dependent Sentiment Classification in News Articles

NewsMTSC: (Multi-)Target-dependent Sentiment Classification in News Articles NewsMTSC is a dataset for target-dependent sentiment classification (TSC)

Felix Hamborg 79 Dec 30, 2022
PyTorch implementation of Tacotron speech synthesis model.

tacotron_pytorch PyTorch implementation of Tacotron speech synthesis model. Inspired from keithito/tacotron. Currently not as much good speech quality

Ryuichi Yamamoto 279 Dec 09, 2022
Universal End2End Training Platform, including pre-training, classification tasks, machine translation, and etc.

背景 安装教程 快速上手 (一)预训练模型 (二)机器翻译 (三)文本分类 TenTrans 进阶 1. 多语言机器翻译 2. 跨语言预训练 背景 TrenTrans是一个统一的端到端的多语言多任务预训练平台,支持多种预训练方式,以及序列生成和自然语言理解任务。 安装教程 git clone git

Tencent Minority-Mandarin Translation Team 42 Dec 20, 2022