Python generation script for BitBirds

Overview

BitBirds generation script

Intro

This is published under MIT license, which means you can do whatever you want with it - entirely at your own risk.

Please don't be an asshole. This is, like, grassroots and stuff.

Specifically I'm asking you in good faith not to directly knock off the BitBirds project, or otherwise screw me over for sharing this. Do not use this for anything hateful or discriminatory.

There is a YouTube video walkthrough to complement this ReadMe ...Link....

Setting the expectations

If you're new to programming you may struggle to set up the dependencies. If you're persistent, you can do it! I believe in you.

Often in technology, setting up a pre-requisite like PIP (a python asset installation tool) isn't something the developer thinks about in a given project because it has been on their computer for months or years.

Even having set up a number of dependencies just a few weeks ago for this project, I don't remember exactly how I worked through the various error messages. When you try to run the script, if it fails there will often be some useful nugget of information buried in the cryptic response blob. As a rule for life - Google is your friend, and others have probably encountered your exact error message. When asking questions on discord, stackoverflow, or wherever, say very specifically (1) what you've tried (2) what you expect as the result and (3) what issue/error you're encountering. That'll get a lot more useful feedback than just shouting HALP.

Dependencies

The dependenices were all installed with the terminal/command line. There is documentation abound about terminal generally, and these tools specifically, but unfortunately I did not save copies of the web pages I used. From memory the things I needed to setup were:

  • Python 3 (default on my mac was python 2.7)

  • PIP - a command-line installation mechanism for python assets.

IIRC I needed to use some special command with python 3 to use pip as an installation mechanism for the items below- perhaps pip3 install ... rather than pip install ...?

  • Pillow - python library to generate images - installed via terminal/command-line with PIP

  • NumPy - python library to work with arrays - installed via terminal/command-line with PIP

  • I don't think I had to install the 'random' library (included in the script) to use the number-randomization feature, but might have.

If you encounter specific setup items I haven't mentioned here let me know, and I'll add them.

How this script works

The video I've put on YouTube complements this overview.

We are iterating through a 'loop' once for each bird. The loop starts with a 'seed number' that is used to deterministically generate pseudo-random numbers. I say 'deterministically' and 'pseudo-random' because from the same seed number the 'random' output will always be the same. It's not truly random in a security or mathematical sense. I used the most recent ETH block at the time as my seed number - 11981207.

There is then a 'chain' of additional random numbers generated that are used to define all of the various traits of the birds. Many of the attributes generate a random number between 1-1000 and use that for some sort of logical statement (e.g. to decide beak color).

Interestingly, the way I've used this random-number chain seems to have resulted in some specific behavior and combinations that I can't yet personally explain. For example the way the bird type selection random number and beak color selection random number chain from one another seems to have resulted in no red-beaked woodpeckers. I also noticed that all of the four cockatoos generated seemed to have the exact same blue crest. Because I wanted more variety than that, in the minted NFTs I ran another batch of cockatoos and replaced the second, third, and fourth cockatoos in the original sequence with others that provided more variety. I made no other changes to the randomly generated set of birds, and if you run the script yourself (without changing the seed) you should see identical matches for each number. If you spot a pattern in why the random numbers behave in this way, I would love to discuss on twitter or discord.

  • Head color and throat color are a random 1-255 number generated into each of the three RGB values in a color.
  • Eye color looks at a random number between 1-1000 and if it's 47 or less, will give the bird crazy eyes. Crazy eyes always have the same pupil color (154, 0, 0) and then generate a random color for the 'white of the eye,' in the same way the head and throat color are generated.
  • Beak color is determined by an evaluation of another 1-1000 'random' number. Grey is most common, gold is also common, red is rare, and black is very rare.

The bird images are 24x24 arrays of variables, representing every pixel in the final image. I've used variables with two letters for each type of pixel (e.g. outline ol, head color hd, beak color bk), so as to keep the 'matrix' of pixel variables easy to see and work with. If you zoom way out on the code you may even be able to see a rough picture of the birds in the code, just from the slight differences in the variables.

The script uses another 1-1000 'random' number to decide which of the bird type templates to use. Basic bird is most common, at about 75% probability. Jay has a 15% probability, woodpecker has 6%, eagle has 3.5%, and cockatoo has half a percent probability.

From there, you're just about home free. The final bit of the loop re-sizes the generated bird from 24x24 pixels up to 480x480 pixels. It generates the image file path (dynamically, wherever you have the folder using the os library), and saves the image into the included folder bird_images.

Then it goes right back to the top of the loop, and does it again for the next bird, until the number of defined loops is completed.

Wrap up

I sincerely hope this inspires someone to learn a new skill, take up coding, or generally expand their horizons! I won't profess to be a professional coder, but I am a technologist in my day job and have found it to be a fulfilling and rewarding life path. This BitBirds project has been a joy to be involved in. The community that has popped up around it already has been inspiring, and I'm excited to see it grow in the years to come.

If would like to show your thanks for this shared asset I'd encourage you to plant some trees! https://onetreeplanted.org/collections/all

If you feel absolutly compelled to send ETH or NFTs to me directly, please know that it is not necessary, but the BitBirds project hardware wallet address is: 0x1fd146a5e6152c5ACd3A013fBC42A243e4DfCe63

Thanks for everything!

Owner
BitBirds generation script!
Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classifi

186 Dec 24, 2022
This is my reading list for my PhD in AI, NLP, Deep Learning and more.

This is my reading list for my PhD in AI, NLP, Deep Learning and more.

Zhong Peixiang 156 Dec 21, 2022
Pangu-Alpha for Transformers

Pangu-Alpha for Transformers Usage Download MindSpore FP32 weights for GPU from here to data/Pangu-alpha_2.6B.ckpt Activate MindSpore environment and

One 5 Oct 01, 2022
A multi-lingual approach to AllenNLP CoReference Resolution along with a wrapper for spaCy.

Crosslingual Coreference Coreference is amazing but the data required for training a model is very scarce. In our case, the available training for non

Pandora Intelligence 71 Jan 04, 2023
Code for Findings at EMNLP 2021 paper: "Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning"

Learn Continually, Generalize Rapidly: Lifelong Knowledge Accumulation for Few-shot Learning This repo is for Findings at EMNLP 2021 paper: Learn Cont

INK Lab @ USC 6 Sep 02, 2022
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Jan 03, 2023
Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding

⚠️ Checkout develop branch to see what is coming in pyannote.audio 2.0: a much smaller and cleaner codebase Python-first API (the good old pyannote-au

pyannote 2.2k Jan 09, 2023
Integrating the Best of TF into PyTorch, for Machine Learning, Natural Language Processing, and Text Generation. This is part of the CASL project: http://casl-project.ai/

Texar-PyTorch is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar

ASYML 726 Dec 30, 2022
Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 B) on a single 16 GB VRAM V100 Google Cloud instance with Huggingface Transformers using DeepSpeed

Guide: Finetune GPT2-XL (1.5 Billion Parameters) and GPT-NEO (2.7 Billion Parameters) on a single 16 GB VRAM V100 Google Cloud instance with Huggingfa

289 Jan 06, 2023
This project aims to conduct a text information retrieval and text mining on medical research publication regarding Covid19 - treatments and vaccinations.

Project: Text Analysis - This project aims to conduct a text information retrieval and text mining on medical research publication regarding Covid19 -

1 Mar 14, 2022
Pipeline for fast building text classification TF-IDF + LogReg baselines.

Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif

Dani El-Ayyass 57 Dec 07, 2022
Applying "Load What You Need: Smaller Versions of Multilingual BERT" to LaBSE

smaller-LaBSE LaBSE(Language-agnostic BERT Sentence Embedding) is a very good method to get sentence embeddings across languages. But it is hard to fi

Jeong Ukjae 13 Sep 02, 2022
Python library to make development of portfolio analysis faster and easier

Trafalgar Python library to make development of portfolio analysis faster and easier Installation 🔥 For the moment, Trafalgar is still in beta develo

Santosh Passoubady 641 Jan 01, 2023
BiNE: Bipartite Network Embedding

BiNE: Bipartite Network Embedding This repository contains the demo code of the paper: BiNE: Bipartite Network Embedding. Ming Gao, Leihui Chen, Xiang

leihuichen 214 Nov 24, 2022
The source code of "Language Models are Few-shot Multilingual Learners" (MRL @ EMNLP 2021)

Language Models are Few-shot Multilingual Learners Paper This is the source code of the paper [Arxiv] [ACL Anthology]: This code has been written usin

Genta Indra Winata 45 Nov 21, 2022
Implementation of the Hybrid Perception Block and Dual-Pruned Self-Attention block from the ITTR paper for Image to Image Translation using Transformers

ITTR - Pytorch Implementation of the Hybrid Perception Block (HPB) and Dual-Pruned Self-Attention (DPSA) block from the ITTR paper for Image to Image

Phil Wang 17 Dec 23, 2022
Scene Text Retrieval via Joint Text Detection and Similarity Learning

This is the code of "Scene Text Retrieval via Joint Text Detection and Similarity Learning". For more details, please refer to our CVPR2021 paper.

79 Nov 29, 2022
Training code for Korean multi-class sentiment analysis

KoSentimentAnalysis Bert implementation for the Korean multi-class sentiment analysis 왜 한국어 감정 다중분류 모델은 거의 없는 것일까?에서 시작된 프로젝트 Environment: Pytorch, Da

Donghoon Shin 3 Dec 02, 2022
A PyTorch-based model pruning toolkit for pre-trained language models

English | 中文说明 TextPruner是一个为预训练语言模型设计的模型裁剪工具包,通过轻量、快速的裁剪方法对模型进行结构化剪枝,从而实现压缩模型体积、提升模型速度。 其他相关资源: 知识蒸馏工具TextBrewer:https://github.com/airaria/TextBrewe

Ziqing Yang 231 Jan 08, 2023
Python port of Google's libphonenumber

phonenumbers Python Library This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase,

David Drysdale 3.1k Dec 29, 2022