Python generation script for BitBirds

Overview

BitBirds generation script

Intro

This is published under MIT license, which means you can do whatever you want with it - entirely at your own risk.

Please don't be an asshole. This is, like, grassroots and stuff.

Specifically I'm asking you in good faith not to directly knock off the BitBirds project, or otherwise screw me over for sharing this. Do not use this for anything hateful or discriminatory.

There is a YouTube video walkthrough to complement this ReadMe ...Link....

Setting the expectations

If you're new to programming you may struggle to set up the dependencies. If you're persistent, you can do it! I believe in you.

Often in technology, setting up a pre-requisite like PIP (a python asset installation tool) isn't something the developer thinks about in a given project because it has been on their computer for months or years.

Even having set up a number of dependencies just a few weeks ago for this project, I don't remember exactly how I worked through the various error messages. When you try to run the script, if it fails there will often be some useful nugget of information buried in the cryptic response blob. As a rule for life - Google is your friend, and others have probably encountered your exact error message. When asking questions on discord, stackoverflow, or wherever, say very specifically (1) what you've tried (2) what you expect as the result and (3) what issue/error you're encountering. That'll get a lot more useful feedback than just shouting HALP.

Dependencies

The dependenices were all installed with the terminal/command line. There is documentation abound about terminal generally, and these tools specifically, but unfortunately I did not save copies of the web pages I used. From memory the things I needed to setup were:

  • Python 3 (default on my mac was python 2.7)

  • PIP - a command-line installation mechanism for python assets.

IIRC I needed to use some special command with python 3 to use pip as an installation mechanism for the items below- perhaps pip3 install ... rather than pip install ...?

  • Pillow - python library to generate images - installed via terminal/command-line with PIP

  • NumPy - python library to work with arrays - installed via terminal/command-line with PIP

  • I don't think I had to install the 'random' library (included in the script) to use the number-randomization feature, but might have.

If you encounter specific setup items I haven't mentioned here let me know, and I'll add them.

How this script works

The video I've put on YouTube complements this overview.

We are iterating through a 'loop' once for each bird. The loop starts with a 'seed number' that is used to deterministically generate pseudo-random numbers. I say 'deterministically' and 'pseudo-random' because from the same seed number the 'random' output will always be the same. It's not truly random in a security or mathematical sense. I used the most recent ETH block at the time as my seed number - 11981207.

There is then a 'chain' of additional random numbers generated that are used to define all of the various traits of the birds. Many of the attributes generate a random number between 1-1000 and use that for some sort of logical statement (e.g. to decide beak color).

Interestingly, the way I've used this random-number chain seems to have resulted in some specific behavior and combinations that I can't yet personally explain. For example the way the bird type selection random number and beak color selection random number chain from one another seems to have resulted in no red-beaked woodpeckers. I also noticed that all of the four cockatoos generated seemed to have the exact same blue crest. Because I wanted more variety than that, in the minted NFTs I ran another batch of cockatoos and replaced the second, third, and fourth cockatoos in the original sequence with others that provided more variety. I made no other changes to the randomly generated set of birds, and if you run the script yourself (without changing the seed) you should see identical matches for each number. If you spot a pattern in why the random numbers behave in this way, I would love to discuss on twitter or discord.

  • Head color and throat color are a random 1-255 number generated into each of the three RGB values in a color.
  • Eye color looks at a random number between 1-1000 and if it's 47 or less, will give the bird crazy eyes. Crazy eyes always have the same pupil color (154, 0, 0) and then generate a random color for the 'white of the eye,' in the same way the head and throat color are generated.
  • Beak color is determined by an evaluation of another 1-1000 'random' number. Grey is most common, gold is also common, red is rare, and black is very rare.

The bird images are 24x24 arrays of variables, representing every pixel in the final image. I've used variables with two letters for each type of pixel (e.g. outline ol, head color hd, beak color bk), so as to keep the 'matrix' of pixel variables easy to see and work with. If you zoom way out on the code you may even be able to see a rough picture of the birds in the code, just from the slight differences in the variables.

The script uses another 1-1000 'random' number to decide which of the bird type templates to use. Basic bird is most common, at about 75% probability. Jay has a 15% probability, woodpecker has 6%, eagle has 3.5%, and cockatoo has half a percent probability.

From there, you're just about home free. The final bit of the loop re-sizes the generated bird from 24x24 pixels up to 480x480 pixels. It generates the image file path (dynamically, wherever you have the folder using the os library), and saves the image into the included folder bird_images.

Then it goes right back to the top of the loop, and does it again for the next bird, until the number of defined loops is completed.

Wrap up

I sincerely hope this inspires someone to learn a new skill, take up coding, or generally expand their horizons! I won't profess to be a professional coder, but I am a technologist in my day job and have found it to be a fulfilling and rewarding life path. This BitBirds project has been a joy to be involved in. The community that has popped up around it already has been inspiring, and I'm excited to see it grow in the years to come.

If would like to show your thanks for this shared asset I'd encourage you to plant some trees! https://onetreeplanted.org/collections/all

If you feel absolutly compelled to send ETH or NFTs to me directly, please know that it is not necessary, but the BitBirds project hardware wallet address is: 0x1fd146a5e6152c5ACd3A013fBC42A243e4DfCe63

Thanks for everything!

Owner
BitBirds generation script!
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 169 Jan 05, 2023
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
Simple python code to fix your combo list by removing any text after a separator or removing duplicate combos

Combo List Fixer A simple python code to fix your combo list by removing any text after a separator or removing duplicate combos Removing any text aft

Hamidreza Dehghan 3 Dec 05, 2022
Shirt Bot is a discord bot which uses GPT-3 to generate text

SHIRT BOT · Shirt Bot is a discord bot which uses GPT-3 to generate text. Made by Cyclcrclicly#3420 (474183744685604865) on Discord. Support Server EX

31 Oct 31, 2022
Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more.

TextBlob: Simplified Text Processing Homepage: https://textblob.readthedocs.io/ TextBlob is a Python (2 and 3) library for processing textual data. It

Steven Loria 8.4k Dec 26, 2022
This is a general repo that helps you develop fast/effective NLP classifiers using Huggingface

NLP Classifier Introduction This project trains a bert model on any NLP classifcation model. And uses the model in make predictions on new data using

Abdullah Tarek 3 Mar 11, 2022
A CSRankings-like index for speech researchers

Speech Rankings This project mimics CSRankings to generate an ordered list of researchers in speech/spoken language processing along with their possib

Mutian He 19 Nov 26, 2022
test

Lidar-data-decode In this project, you can decode your lidar data frame(pcap file) and make your own datasets(test dataset) in Windows without any hug

46 Dec 05, 2022
NVDA, the free and open source Screen Reader for Microsoft Windows

NVDA NVDA (NonVisual Desktop Access) is a free, open source screen reader for Microsoft Windows. It is developed by NV Access in collaboration with a

NV Access 1.6k Jan 07, 2023
An example project using OpenPrompt under pytorch-lightning for prompt-based SST2 sentiment analysis model

pl_prompt_sst An example project using OpenPrompt under the framework of pytorch-lightning for a training prompt-based text classification model on SS

Zhiling Zhang 5 Oct 21, 2022
Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any language

Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any

Little Endian 1 Apr 28, 2022
My implementation of Safaricom Machine Learning Codility test. The code has bugs, logical I guess I made errors and any correction will be appreciated.

Safaricom_Codility Machine Learning 2022 The test entails two questions. Question 1 was on Machine Learning. Question 2 was on SQL I ran out of time.

Lawrence M. 1 Mar 03, 2022
Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
💥 Fast State-of-the-Art Tokenizers optimized for Research and Production

Provides an implementation of today's most used tokenizers, with a focus on performance and versatility. Main features: Train new vocabularies and tok

Hugging Face 6.2k Dec 31, 2022
Gold standard corpus annotated with verb-preverb connections for Hungarian.

Hungarian Preverb Corpus A gold standard corpus manually annotated with verb-preverb connections for Hungarian. corpus The corpus consist of the follo

RIL Lexical Knowledge Representation Research Group 3 Jan 27, 2022
CrossNER: Evaluating Cross-Domain Named Entity Recognition (AAAI-2021)

CrossNER is a fully-labeled collected of named entity recognition (NER) data spanning over five diverse domains (Politics, Natural Science, Music, Literature, and Artificial Intelligence) with specia

Zihan Liu 89 Nov 10, 2022
Neural-Machine-Translation - Implementation of revolutionary machine translation models

Neural Machine Translation Framework: PyTorch Repository contaning my implementa

Utkarsh Jain 1 Feb 17, 2022
A Fast Command Analyser based on Dict and Pydantic

Alconna Alconna 隶属于ArcletProject, 在Cesloi内有内置 Alconna 是 Cesloi-CommandAnalysis 的高级版,支持解析消息链 一般情况下请当作简易的消息链解析器/命令解析器 文档 暂时的文档 Example from arclet.alcon

19 Jan 03, 2023
PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Cross-Covariance Image Transformer (XCiT) PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer L

Facebook Research 605 Jan 02, 2023
Official PyTorch implementation of Time-aware Large Kernel (TaLK) Convolutions (ICML 2020)

Time-aware Large Kernel (TaLK) Convolutions (Lioutas et al., 2020) This repository contains the source code, pre-trained models, as well as instructio

Vasileios Lioutas 28 Dec 07, 2022