Python generation script for BitBirds

Overview

BitBirds generation script

Intro

This is published under MIT license, which means you can do whatever you want with it - entirely at your own risk.

Please don't be an asshole. This is, like, grassroots and stuff.

Specifically I'm asking you in good faith not to directly knock off the BitBirds project, or otherwise screw me over for sharing this. Do not use this for anything hateful or discriminatory.

There is a YouTube video walkthrough to complement this ReadMe ...Link....

Setting the expectations

If you're new to programming you may struggle to set up the dependencies. If you're persistent, you can do it! I believe in you.

Often in technology, setting up a pre-requisite like PIP (a python asset installation tool) isn't something the developer thinks about in a given project because it has been on their computer for months or years.

Even having set up a number of dependencies just a few weeks ago for this project, I don't remember exactly how I worked through the various error messages. When you try to run the script, if it fails there will often be some useful nugget of information buried in the cryptic response blob. As a rule for life - Google is your friend, and others have probably encountered your exact error message. When asking questions on discord, stackoverflow, or wherever, say very specifically (1) what you've tried (2) what you expect as the result and (3) what issue/error you're encountering. That'll get a lot more useful feedback than just shouting HALP.

Dependencies

The dependenices were all installed with the terminal/command line. There is documentation abound about terminal generally, and these tools specifically, but unfortunately I did not save copies of the web pages I used. From memory the things I needed to setup were:

  • Python 3 (default on my mac was python 2.7)

  • PIP - a command-line installation mechanism for python assets.

IIRC I needed to use some special command with python 3 to use pip as an installation mechanism for the items below- perhaps pip3 install ... rather than pip install ...?

  • Pillow - python library to generate images - installed via terminal/command-line with PIP

  • NumPy - python library to work with arrays - installed via terminal/command-line with PIP

  • I don't think I had to install the 'random' library (included in the script) to use the number-randomization feature, but might have.

If you encounter specific setup items I haven't mentioned here let me know, and I'll add them.

How this script works

The video I've put on YouTube complements this overview.

We are iterating through a 'loop' once for each bird. The loop starts with a 'seed number' that is used to deterministically generate pseudo-random numbers. I say 'deterministically' and 'pseudo-random' because from the same seed number the 'random' output will always be the same. It's not truly random in a security or mathematical sense. I used the most recent ETH block at the time as my seed number - 11981207.

There is then a 'chain' of additional random numbers generated that are used to define all of the various traits of the birds. Many of the attributes generate a random number between 1-1000 and use that for some sort of logical statement (e.g. to decide beak color).

Interestingly, the way I've used this random-number chain seems to have resulted in some specific behavior and combinations that I can't yet personally explain. For example the way the bird type selection random number and beak color selection random number chain from one another seems to have resulted in no red-beaked woodpeckers. I also noticed that all of the four cockatoos generated seemed to have the exact same blue crest. Because I wanted more variety than that, in the minted NFTs I ran another batch of cockatoos and replaced the second, third, and fourth cockatoos in the original sequence with others that provided more variety. I made no other changes to the randomly generated set of birds, and if you run the script yourself (without changing the seed) you should see identical matches for each number. If you spot a pattern in why the random numbers behave in this way, I would love to discuss on twitter or discord.

  • Head color and throat color are a random 1-255 number generated into each of the three RGB values in a color.
  • Eye color looks at a random number between 1-1000 and if it's 47 or less, will give the bird crazy eyes. Crazy eyes always have the same pupil color (154, 0, 0) and then generate a random color for the 'white of the eye,' in the same way the head and throat color are generated.
  • Beak color is determined by an evaluation of another 1-1000 'random' number. Grey is most common, gold is also common, red is rare, and black is very rare.

The bird images are 24x24 arrays of variables, representing every pixel in the final image. I've used variables with two letters for each type of pixel (e.g. outline ol, head color hd, beak color bk), so as to keep the 'matrix' of pixel variables easy to see and work with. If you zoom way out on the code you may even be able to see a rough picture of the birds in the code, just from the slight differences in the variables.

The script uses another 1-1000 'random' number to decide which of the bird type templates to use. Basic bird is most common, at about 75% probability. Jay has a 15% probability, woodpecker has 6%, eagle has 3.5%, and cockatoo has half a percent probability.

From there, you're just about home free. The final bit of the loop re-sizes the generated bird from 24x24 pixels up to 480x480 pixels. It generates the image file path (dynamically, wherever you have the folder using the os library), and saves the image into the included folder bird_images.

Then it goes right back to the top of the loop, and does it again for the next bird, until the number of defined loops is completed.

Wrap up

I sincerely hope this inspires someone to learn a new skill, take up coding, or generally expand their horizons! I won't profess to be a professional coder, but I am a technologist in my day job and have found it to be a fulfilling and rewarding life path. This BitBirds project has been a joy to be involved in. The community that has popped up around it already has been inspiring, and I'm excited to see it grow in the years to come.

If would like to show your thanks for this shared asset I'd encourage you to plant some trees! https://onetreeplanted.org/collections/all

If you feel absolutly compelled to send ETH or NFTs to me directly, please know that it is not necessary, but the BitBirds project hardware wallet address is: 0x1fd146a5e6152c5ACd3A013fBC42A243e4DfCe63

Thanks for everything!

Owner
BitBirds generation script!
Random Directed Acyclic Graph Generator

DAG_Generator Random Directed Acyclic Graph Generator verison1.0 简介 工作流通常由DAG(有向无环图)来定义,其中每个计算任务$T_i$由一个顶点(node,task,vertex)表示。同时,任务之间的每个数据或控制依赖性由一条加权

Livion 17 Dec 27, 2022
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

Bethge Lab 61 Dec 21, 2022
Associated Repository for "Translation between Molecules and Natural Language"

MolT5: Translation between Molecules and Natural Language Associated repository for "Translation between Molecules and Natural Language". Table of Con

67 Dec 15, 2022
Mysticbbs-rjam - rJAM splitscreen message reader for MysticBBS A46+

rJAM splitscreen message reader for MysticBBS A46+

Robbert Langezaal 4 Nov 22, 2022
SurvTRACE: Transformers for Survival Analysis with Competing Events

⭐ SurvTRACE: Transformers for Survival Analysis with Competing Events This repo provides the implementation of SurvTRACE for survival analysis. It is

Zifeng 13 Oct 06, 2022
Deduplication is the task to combine different representations of the same real world entity.

Deduplication is the task to combine different representations of the same real world entity. This package implements deduplication using active learning. Active learning allows for rapid training wi

63 Nov 17, 2022
Neural network models for joint POS tagging and dependency parsing (CoNLL 2017-2018)

Neural Network Models for Joint POS Tagging and Dependency Parsing Implementations of joint models for POS tagging and dependency parsing, as describe

Dat Quoc Nguyen 152 Sep 02, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
VMD Audio/Text control with natural language

This repository is a proof of principle for performing Molecular Dynamics analysis, in this case with the program VMD, via natural language commands.

Andrew White 13 Jun 09, 2022
ReCoin - Restoring our environment and businesses in parallel

Shashank Ojha, Sabrina Button, Abdellah Ghassel, Joshua Gonzales "Reduce Reuse R

sabrina button 1 Mar 14, 2022
🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

Hugging Face 15k Jan 02, 2023
Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings

Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings Trong bài viết này mình sẽ sử dụng pretrain model SimCS

Vo Van Phuc 18 Nov 25, 2022
BERT, LDA, and TFIDF based keyword extraction in Python

BERT, LDA, and TFIDF based keyword extraction in Python kwx is a toolkit for multilingual keyword extraction based on Google's BERT and Latent Dirichl

Andrew Tavis McAllister 41 Dec 27, 2022
NLP Text Classification

多标签文本分类任务 近年来随着深度学习的发展,模型参数的数量飞速增长。为了训练这些参数,需要更大的数据集来避免过拟合。然而,对于大部分NLP任务来说,构建大规模的标注数据集非常困难(成本过高),特别是对于句法和语义相关的任务。相比之下,大规模的未标注语料库的构建则相对容易。为了利用这些数据,我们可以

Jason 1 Nov 11, 2021
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
End-2-end speech synthesis with recurrent neural networks

Introduction New: Interactive demo using Google Colaboratory can be found here TTS-Cube is an end-2-end speech synthesis system that provides a full p

Tiberiu Boros 214 Dec 07, 2022
Question answering app is used to answer for a user given question from user given text.

Question answering app is used to answer for a user given question from user given text.It is created using HuggingFace's transformer pipeline and streamlit python packages.

Siva Prakash 3 Apr 05, 2022
Blue Brain text mining toolbox for semantic search and structured information extraction

Blue Brain Search Source Code DOI Data & Models DOI Documentation Latest Release Python Versions License Build Status Static Typing Code Style Securit

The Blue Brain Project 29 Dec 01, 2022
Non-Autoregressive Predictive Coding

Non-Autoregressive Predictive Coding This repository contains the implementation of Non-Autoregressive Predictive Coding (NPC) as described in the pre

Alexander H. Liu 43 Nov 15, 2022
An automated program that helps customers of Pizza Palour place their pizza orders

PIzza_Order_Assistant Introduction An automated program that helps customers of Pizza Palour place their pizza orders. The program uses voice commands

Tindi Sommers 1 Dec 26, 2021