Python generation script for BitBirds

Overview

BitBirds generation script

Intro

This is published under MIT license, which means you can do whatever you want with it - entirely at your own risk.

Please don't be an asshole. This is, like, grassroots and stuff.

Specifically I'm asking you in good faith not to directly knock off the BitBirds project, or otherwise screw me over for sharing this. Do not use this for anything hateful or discriminatory.

There is a YouTube video walkthrough to complement this ReadMe ...Link....

Setting the expectations

If you're new to programming you may struggle to set up the dependencies. If you're persistent, you can do it! I believe in you.

Often in technology, setting up a pre-requisite like PIP (a python asset installation tool) isn't something the developer thinks about in a given project because it has been on their computer for months or years.

Even having set up a number of dependencies just a few weeks ago for this project, I don't remember exactly how I worked through the various error messages. When you try to run the script, if it fails there will often be some useful nugget of information buried in the cryptic response blob. As a rule for life - Google is your friend, and others have probably encountered your exact error message. When asking questions on discord, stackoverflow, or wherever, say very specifically (1) what you've tried (2) what you expect as the result and (3) what issue/error you're encountering. That'll get a lot more useful feedback than just shouting HALP.

Dependencies

The dependenices were all installed with the terminal/command line. There is documentation abound about terminal generally, and these tools specifically, but unfortunately I did not save copies of the web pages I used. From memory the things I needed to setup were:

  • Python 3 (default on my mac was python 2.7)

  • PIP - a command-line installation mechanism for python assets.

IIRC I needed to use some special command with python 3 to use pip as an installation mechanism for the items below- perhaps pip3 install ... rather than pip install ...?

  • Pillow - python library to generate images - installed via terminal/command-line with PIP

  • NumPy - python library to work with arrays - installed via terminal/command-line with PIP

  • I don't think I had to install the 'random' library (included in the script) to use the number-randomization feature, but might have.

If you encounter specific setup items I haven't mentioned here let me know, and I'll add them.

How this script works

The video I've put on YouTube complements this overview.

We are iterating through a 'loop' once for each bird. The loop starts with a 'seed number' that is used to deterministically generate pseudo-random numbers. I say 'deterministically' and 'pseudo-random' because from the same seed number the 'random' output will always be the same. It's not truly random in a security or mathematical sense. I used the most recent ETH block at the time as my seed number - 11981207.

There is then a 'chain' of additional random numbers generated that are used to define all of the various traits of the birds. Many of the attributes generate a random number between 1-1000 and use that for some sort of logical statement (e.g. to decide beak color).

Interestingly, the way I've used this random-number chain seems to have resulted in some specific behavior and combinations that I can't yet personally explain. For example the way the bird type selection random number and beak color selection random number chain from one another seems to have resulted in no red-beaked woodpeckers. I also noticed that all of the four cockatoos generated seemed to have the exact same blue crest. Because I wanted more variety than that, in the minted NFTs I ran another batch of cockatoos and replaced the second, third, and fourth cockatoos in the original sequence with others that provided more variety. I made no other changes to the randomly generated set of birds, and if you run the script yourself (without changing the seed) you should see identical matches for each number. If you spot a pattern in why the random numbers behave in this way, I would love to discuss on twitter or discord.

  • Head color and throat color are a random 1-255 number generated into each of the three RGB values in a color.
  • Eye color looks at a random number between 1-1000 and if it's 47 or less, will give the bird crazy eyes. Crazy eyes always have the same pupil color (154, 0, 0) and then generate a random color for the 'white of the eye,' in the same way the head and throat color are generated.
  • Beak color is determined by an evaluation of another 1-1000 'random' number. Grey is most common, gold is also common, red is rare, and black is very rare.

The bird images are 24x24 arrays of variables, representing every pixel in the final image. I've used variables with two letters for each type of pixel (e.g. outline ol, head color hd, beak color bk), so as to keep the 'matrix' of pixel variables easy to see and work with. If you zoom way out on the code you may even be able to see a rough picture of the birds in the code, just from the slight differences in the variables.

The script uses another 1-1000 'random' number to decide which of the bird type templates to use. Basic bird is most common, at about 75% probability. Jay has a 15% probability, woodpecker has 6%, eagle has 3.5%, and cockatoo has half a percent probability.

From there, you're just about home free. The final bit of the loop re-sizes the generated bird from 24x24 pixels up to 480x480 pixels. It generates the image file path (dynamically, wherever you have the folder using the os library), and saves the image into the included folder bird_images.

Then it goes right back to the top of the loop, and does it again for the next bird, until the number of defined loops is completed.

Wrap up

I sincerely hope this inspires someone to learn a new skill, take up coding, or generally expand their horizons! I won't profess to be a professional coder, but I am a technologist in my day job and have found it to be a fulfilling and rewarding life path. This BitBirds project has been a joy to be involved in. The community that has popped up around it already has been inspiring, and I'm excited to see it grow in the years to come.

If would like to show your thanks for this shared asset I'd encourage you to plant some trees! https://onetreeplanted.org/collections/all

If you feel absolutly compelled to send ETH or NFTs to me directly, please know that it is not necessary, but the BitBirds project hardware wallet address is: 0x1fd146a5e6152c5ACd3A013fBC42A243e4DfCe63

Thanks for everything!

Owner
BitBirds generation script!
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
☀️ Measuring the accuracy of BBC weather forecasts in Honolulu, USA

Accuracy of BBC Weather forecasts for Honolulu This repository records the forecasts made by BBC Weather for the city of Honolulu, USA. Essentially, t

Max Halford 12 Oct 15, 2022
Legal text retrieval for python

legal-text-retrieval Overview This system contains 2 steps: generate training data containing negative sample found by mixture score of cosine(tfidf)

Nguyễn Minh Phương 22 Dec 06, 2022
Shirt Bot is a discord bot which uses GPT-3 to generate text

SHIRT BOT · Shirt Bot is a discord bot which uses GPT-3 to generate text. Made by Cyclcrclicly#3420 (474183744685604865) on Discord. Support Server EX

31 Oct 31, 2022
An extensive UI tool built using new data scraped from BBC News

BBC-News-Analyzer An extensive UI tool built using new data scraped from BBC New

Antoreep Jana 1 Dec 31, 2021
Graphical user interface for Argos Translate

Argos Translate GUI Website | GitHub | PyPI Graphical user interface for Argos Translate. Install pip3 install argostranslategui

Argos Open Tech 16 Dec 07, 2022
C.J. Hutto 3.8k Dec 30, 2022
Generate vector graphics from a textual caption

VectorAscent: Generate vector graphics from a textual description Example "a painting of an evergreen tree" python text_to_painting.py --prompt "a pai

Ajay Jain 97 Dec 15, 2022
Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Machel Reid 82 Dec 19, 2022
The entmax mapping and its loss, a family of sparse softmax alternatives.

entmax This package provides a pytorch implementation of entmax and entmax losses: a sparse family of probability mappings and corresponding loss func

DeepSPIN 330 Dec 22, 2022
Every Google, Azure & IBM text to speech voice for free

TTS-Grabber Quick thing i made about a year ago to download any text with any tts voice, over 630 voices to choose from currently. It will split the i

16 Dec 07, 2022
Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation (SIGGRAPH Asia 2021)

Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation This repository contains the implementation of the following paper: Live Speech

OldSix 575 Dec 31, 2022
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.6k Dec 27, 2022
STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch.

st3 STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch. Currently it supports converting pbmm models to pt scripts with integra

Vlad Ki 8 Oct 18, 2021
Learn meanings behind words is a key element in NLP. This project concentrates on the disambiguation of preposition senses. Therefore, we train a bert-transformer model and surpass the state-of-the-art.

New State-of-the-Art in Preposition Sense Disambiguation Supervisor: Prof. Dr. Alexander Mehler Alexander Henlein Institutions: Goethe University TTLa

Dirk Neuhäuser 4 Apr 06, 2022
Milaan Parmar / Милан пармар / _米兰 帕尔马 170 Dec 13, 2022
Code for "Generative adversarial networks for reconstructing natural images from brain activity".

Reconstruct handwritten characters from brains using GANs Example code for the paper "Generative adversarial networks for reconstructing natural image

K. Seeliger 2 May 17, 2022
Augmenty is an augmentation library based on spaCy for augmenting texts.

Augmenty: The cherry on top of your NLP pipeline Augmenty is an augmentation library based on spaCy for augmenting texts. Besides a wide array of high

Kenneth Enevoldsen 124 Dec 29, 2022
NLTK Source

Natural Language Toolkit (NLTK) NLTK -- the Natural Language Toolkit -- is a suite of open source Python modules, data sets, and tutorials supporting

Natural Language Toolkit 11.4k Jan 04, 2023
Retraining OpenAI's GPT-2 on Discord Chats

Train OpenAI's GPT-2 on Discord Chats Retraining a Text Generation Model on Discord Chats using gpt-2-simple that wraps existing model fine-tuning and

Ayush Mishra 4 Oct 27, 2022