PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Related tags

Text Data & NLPxcit
Overview

Cross-Covariance Image Transformer (XCiT)

PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Linear complexity in time and memory

Our XCiT models has a linear complexity w.r.t number of patches/tokens:

Peak Memory (inference) Millisecond/Image (Inference)

Scaling to high resolution inputs

XCiT can scale to high resolution inputs both due to cheaper compute requirement as well as better adaptability to higher resolution at test time (see Figure 3 in the paper)

Detection and Instance Segmentation for Ultra high resolution images (6000x4000)

Detection and Instance segmentation result for an ultra high resolution image 6000x4000 )

XCiT+DINO: High Res. Self-Attention Visualization 🦖

Our XCiT models with self-supervised training using DINO can obtain high resolution attention maps.

xcit_dino.mp4

Self-Attention visualization per head

Below we show the attention maps for each of the 8 heads separately and we can observe that every head specializes in different semantic aspects of the scene for the foreground as well as the background.

Multi_head.mp4

Getting Started

First, clone the repo

git clone https://github.com/facebookresearch/XCiT.git

Then, you can install the required packages including: Pytorch version 1.7.1, torchvision version 0.8.2 and Timm version 0.4.8

pip install -r requirements.txt

Download and extract the ImageNet dataset. Afterwards, set the --data-path argument to the corresponding extracted ImageNet path.

For full details about all the available arguments, you can use

python main.py --help

For detection and segmentation downstream tasks, please check:


Model Zoo

We provide XCiT models pre-trained weights on ImageNet-1k.

§: distillation

Models with 16x16 patch size

Arch params Model
224 224 § 384 §
top-1 weights top-1 weights top-1 weights
xcit_nano_12_p16 3M 69.9% download 72.2% download 75.4% download
xcit_tiny_12_p16 7M 77.1% download 78.6% download 80.9% download
xcit_tiny_24_p16 12M 79.4% download 80.4% download 82.6% download
xcit_small_12_p16 26M 82.0% download 83.3% download 84.7% download
xcit_small_24_p16 48M 82.6% download 83.9% download 85.1% download
xcit_medium_24_p16 84M 82.7% download 84.3% download 85.4% download
xcit_large_24_p16 189M 82.9% download 84.9% download 85.8% download

Models with 8x8 patch size

Arch params Model
224 224 § 384 §
top-1 weights top-1 weights top-1 weights
xcit_nano_12_p8 3M 73.8% download 76.3% download 77.8% download
xcit_tiny_12_p8 7M 79.7% download 81.2% download 82.4% download
xcit_tiny_24_p8 12M 81.9% download 82.6% download 83.7% download
xcit_small_12_p8 26M 83.4% download 84.2% download 85.1% download
xcit_small_24_p8 48M 83.9% download 84.9% download 85.6% download
xcit_medium_24_p8 84M 83.7% download 85.1% download 85.8% download
xcit_large_24_p8 189M 84.4% download 85.4% download 86.0% download

XCiT + DINO Self-supervised models

Arch params k-nn linear download
xcit_small_12_p16 26M 76.0% 77.8% backbone
xcit_small_12_p8 26M 77.1% 79.2% backbone
xcit_medium_24_p16 84M 76.4% 78.8% backbone
xcit_medium_24_p8 84M 77.9% 80.3% backbone

Training

For training using a single node, use the following command

python -m torch.distributed.launch --nproc_per_node=[NUM_GPUS] --use_env main.py --model [MODEL_KEY] --batch-size [BATCH_SIZE] --drop-path [STOCHASTIC_DEPTH_RATIO] --output_dir [OUTPUT_PATH]

For example, the XCiT-S12/16 model can be trained using the following command

python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --model xcit_small_12_p16 --batch-size 128 --drop-path 0.05 --output_dir /experiments/xcit_small_12_p16/ --epochs [NUM_EPOCHS]

For multinode training via SLURM you can alternatively use

python run_with_submitit.py --partition [PARTITION_NAME] --nodes 2 --ngpus 8 --model xcit_small_12_p16 --batch-size 64 --drop-path 0.05 --job_dir /experiments/xcit_small_12_p16/ --epochs 400

More details for the hyper-parameters used to train the different models can be found in Table B.1 in the paper.

Evaluation

To evaluate an XCiT model using the checkpoints above or models you trained use the following command:

python main.py --eval --model  --input-size  [--full_crop] --pretrained 

By default we use the --full_crop flag which evaluates the model with a crop ratio of 1.0 instead of 0.875 following CaiT.

For example, the command to evaluate the XCiT-S12/16 using 224x224 images:

python main.py --eval --model xcit_small_12_p16 --input-size 384 --full_crop --pretrained https://dl.fbaipublicfiles.com/xcit/xcit_small_12_p16_224.pth

Acknowledgement

This repository is built using the Timm library and the DeiT repository. The self-supervised training is based on the DINO repository.

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Contributing

We actively welcome your pull requests! Please see CONTRIBUTING.md and CODE_OF_CONDUCT.md for more info.

Citation

If you find this repository useful, please consider citing our work:

@misc{elnouby2021xcit,
      title={XCiT: Cross-Covariance Image Transformers}, 
      author={Alaaeldin El-Nouby and Hugo Touvron and Mathilde Caron and Piotr Bojanowski and Matthijs Douze and Armand Joulin and Ivan Laptev and Natalia Neverova and Gabriel Synnaeve and Jakob Verbeek and Hervé Jegou},
      year={2021},
      journal={arXiv preprint arXiv:2106.09681},
}
Owner
Facebook Research
Facebook Research
ADCS - Automatic Defect Classification System (ADCS) for SSMC

Table of Contents Table of Contents ADCS Overview Summary Operator's Guide Demo System Design System Logic Training Mode Production System Flow Folder

Tam Zher Min 2 Jun 24, 2022
189 Jan 02, 2023
Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Jifan Chen 22 Oct 21, 2022
A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:

A Python package implementing a new model for text classification with visualization tools for Explainable AI 🍣 Online live demos: http://tworld.io/s

Sergio Burdisso 285 Jan 02, 2023
Conversational-AI-ChatBot - Intelligent ChatBot built with Microsoft's DialoGPT transformer to make conversations with human users!

Conversational AI ChatBot Intelligent ChatBot built with Microsoft's DialoGPT transformer to make conversations with human users! In this project? Thi

Rajkumar Lakshmanamoorthy 6 Nov 30, 2022
ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

Antlr Project 13.6k Jan 05, 2023
Implementaion of our ACL 2022 paper Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation

Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation This is the implementaion of our paper: Bridging the

hezw.tkcw 20 Dec 12, 2022
NeurIPS'21: Probabilistic Margins for Instance Reweighting in Adversarial Training (Pytorch implementation).

source code for NeurIPS21 paper robabilistic Margins for Instance Reweighting in Adversarial Training

9 Dec 20, 2022
Transformers implementation for Fall 2021 Clinic

Installation Download miniconda3 if not already installed You can check by running typing conda in command prompt. Use conda to create an environment

Aakash Tripathi 1 Oct 28, 2021
An easy to use, user-friendly and efficient code for extracting OpenAI CLIP (Global/Grid) features from image and text respectively.

Extracting OpenAI CLIP (Global/Grid) Features from Image and Text This repo aims at providing an easy to use and efficient code for extracting image &

Jianjie(JJ) Luo 13 Jan 06, 2023
Label data using HuggingFace's transformers and automatically get a prediction service

Label Studio for Hugging Face's Transformers Website • Docs • Twitter • Join Slack Community Transfer learning for NLP models by annotating your textu

Heartex 135 Dec 29, 2022
Awesome-NLP-Research (ANLP)

Awesome-NLP-Research (ANLP)

Language, Information, and Learning at Yale 72 Dec 19, 2022
AI-Broad-casting - AI Broad casting with python

Basic Code 1. Use The Code Configuration Environment conda create -n code_base p

Journey is a NLP-Powered Developer assistant

Journey Journey is a NLP-Powered Developer assistant Using on the powerful Natural Language Processing library Mindmeld, this projects aims to assist

Christian Eilers 21 Dec 11, 2022
Autoregressive Entity Retrieval

The GENRE (Generative ENtity REtrieval) system as presented in Autoregressive Entity Retrieval implemented in pytorch. @inproceedings{decao2020autoreg

Meta Research 611 Dec 16, 2022
This is my reading list for my PhD in AI, NLP, Deep Learning and more.

This is my reading list for my PhD in AI, NLP, Deep Learning and more.

Zhong Peixiang 156 Dec 21, 2022
Phrase-Based & Neural Unsupervised Machine Translation

Unsupervised Machine Translation This repository contains the original implementation of the unsupervised PBSMT and NMT models presented in Phrase-Bas

Facebook Research 1.5k Dec 28, 2022
CoSENT 比Sentence-BERT更有效的句向量方案

CoSENT 比Sentence-BERT更有效的句向量方案

苏剑林(Jianlin Su) 201 Dec 12, 2022
☀️ Measuring the accuracy of BBC weather forecasts in Honolulu, USA

Accuracy of BBC Weather forecasts for Honolulu This repository records the forecasts made by BBC Weather for the city of Honolulu, USA. Essentially, t

Max Halford 12 Oct 15, 2022