Gold standard corpus annotated with verb-preverb connections for Hungarian.

Overview

Hungarian Preverb Corpus

A gold standard corpus manually annotated with verb-preverb connections for Hungarian.

corpus

The corpus consist of the following 4 files:

filename # sentences # preverbs
difficult_validate1.txt 310 357
difficult_validate2.txt 840 935
difficult_test.txt 327 376
general_test.txt 503 500

Preverbs in the general dataset are in the distribution as they appear in normal Hungarian text. The difficult dataset is specially crafted: the most common and most-easy-to-handle pattern, i.e. when a verb is directly followed by its preverb (e.g. megy ki 'go out'), is omitted. validate is for development/validation, test is for testing. Note that a general_validate dataset would not be useful, because the trivial pattern would be in vast majority overwhelming the more interesting less frequent patterns.

Accordingly, the emPreverb tool which connects preverbs to their corresponding verb, was developed based only on interesting difficult examples, and tested both on difficult and general data.

(Remark. The difficult_validate dataset is divided into two parts for historical reasons, but you can simply use them together: they consist a total of 1150 sentences and 1292 preverbs.)

corpus annotation guidelines

  • Preverb marked by a suffixed backslash followed by a (single digit!) ID number: meg\1.
  • Word from which the preverb was separated marked by a pipe followed by the same ID number: főzve|1.
  • Within the same line, different verb-prefix pairs must (obviously) receive different ID numbers.
  • A preverb that does not belong to any word in the sentence (ellipsis etc.) is marked with a zero ID: "Hazakísérhetlek?" "Meg\0 hát." Any number of preverbs can have the 0 ID within the same line.
  • In the difficult dataset, a verb directly followed by its preverb is not annotated: főzte meg, but: főzte|1 volna meg\1.
  • In the general dataset, the first pattern is annotated as well: főzte|1 meg\1.
  • Normally there is a 1:1 correspondence between preverbs and verbs. However, there are exceptions, and these are annotated accordingly, e.g. Se ki\1, se be\1 nem lehetett menni|1 Budakesziről; át-\1 meg átjárták|1.

Check (see Step 1 to 4 in evaluate.ipynb) whether tokens annotated as separated preverbs are also analysed by e-magyar morph,pos as preverbs. If not (e.g. if the preverb meg is tagged by emtsv as a [/Conj]), remove this annotation (or the whole item if no annotation left) from the dataset because preverb will necessarily fail due to incorrect emtsv annotation, which is extraneous to its performance evaluation. Exception: person-inflected preverb-like postpositions such as in utánam\1 dobják|1, which are tagged by emtsv as [/Post], and case-inflected personal pronouns such as in hozzá\1 voltam szokva|1, which are tagged as [/N|Pro], should not be removed from the dataset since preverb should be able to handle these.

If a token is annotated as the verb stem counterpart of a separated preverb, but is not tagged by emtsv as a verb, check whether the preverb annotation is correct, but if so, do not remove this annotation from the dataset. preverb is supposed to be able to handle the connection of such separated preverbs.

evaluation

An environment for reproducing evaluation of emPreverb as published in the paper below.

git clone https://github.com/ril-lexknowrep/emPreverb
cd emPreverb
make evaluate

Note that make evaluate clones this current repo inside emPreverb and runs evaluation.

The results are obtained in general_test_results.txt and difficult_test_results.txt. This should be exactly the same which can be found in Table 3 of the paper below.

development

An environment used for developing emPreverb. It is "for us" but if you insist to use it:

git clone https://github.com/ril-lexknowrep/emPreverb
cd emPreverb
git clone https://github.com/ril-lexknowrep/hungarian-preverb-corpus
cd hungarian-preverb-corpus/development
jupyter notebook evaluate.ipynb

(Remark. Yes, please clone this repo inside emPreverb.)

citation

If you use the corpus, please cite the following paper.

Pethő, Gergely and Sass, Bálint and Kalivoda, Ágnes and Simon, László and Lipp, Veronika: Igekötő-kapcsolás. In: MSZNY 2022.

Owner
RIL Lexical Knowledge Representation Research Group
RIL Lexical Knowledge Representation Research Group
An easy to use Natural Language Processing library and framework for predicting, training, fine-tuning, and serving up state-of-the-art NLP models.

Welcome to AdaptNLP A high level framework and library for running, training, and deploying state-of-the-art Natural Language Processing (NLP) models

Novetta 407 Jan 03, 2023
Semi-automated vocabulary generation from semantic vector models

vec2word Semi-automated vocabulary generation from semantic vector models This script generates a list of potential conlang word forms along with asso

9 Nov 25, 2022
Prithivida 690 Jan 04, 2023
LSTM model - IMDB review sentiment analysis

NLP - Movie review sentiment analysis The colab notebook contains the code for building a LSTM Recurrent Neural Network that gives 87-88% accuracy on

Sundeep Bhimireddy 1 Jan 29, 2022
PG-19 Language Modelling Benchmark

PG-19 Language Modelling Benchmark This repository contains the PG-19 language modeling benchmark. It includes a set of books extracted from the Proje

DeepMind 161 Oct 30, 2022
IndoBERTweet is the first large-scale pretrained model for Indonesian Twitter. Published at EMNLP 2021 (main conference)

IndoBERTweet 🐦 🇮🇩 1. Paper Fajri Koto, Jey Han Lau, and Timothy Baldwin. IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effe

IndoLEM 40 Nov 30, 2022
Practical Machine Learning with Python

Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system.

Dipanjan (DJ) Sarkar 2k Jan 08, 2023
L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources.

L3Cube-MahaCorpus L3Cube-MahaCorpus a Marathi monolingual data set scraped from different internet sources. We expand the existing Marathi monolingual

21 Dec 17, 2022
Built for cleaning purposes in military institutions

Ferramenta do AL Construído para fins de limpeza em instituições militares. Instalação Requer python = 3.2 pip install -r requirements.txt Usagem Exe

0 Aug 13, 2022
Crowd sourced training data for Rasa NLU models

NLU Training Data Crowd-sourced training data for the development and testing of Rasa NLU models. If you're interested in grabbing some data feel free

Rasa 169 Dec 26, 2022
🗣️ NALP is a library that covers Natural Adversarial Language Processing.

NALP: Natural Adversarial Language Processing Welcome to NALP. Have you ever wanted to create natural text from raw sources? If yes, NALP is for you!

Gustavo Rosa 21 Aug 12, 2022
MASS: Masked Sequence to Sequence Pre-training for Language Generation

MASS: Masked Sequence to Sequence Pre-training for Language Generation

Microsoft 1.1k Dec 17, 2022
Simple translation demo showcasing our headliner package.

Headliner Demo This is a demo showcasing our Headliner package. In particular, we trained a simple seq2seq model on an English-German dataset. We didn

Axel Springer News Media & Tech GmbH & Co. KG - Ideas Engineering 16 Nov 24, 2022
ByT5: Towards a token-free future with pre-trained byte-to-byte models

ByT5: Towards a token-free future with pre-trained byte-to-byte models ByT5 is a tokenizer-free extension of the mT5 model. Instead of using a subword

Google Research 409 Jan 06, 2023
Fast topic modeling platform

The state-of-the-art platform for topic modeling. Full Documentation User Mailing List Download Releases User survey What is BigARTM? BigARTM is a pow

BigARTM 633 Dec 21, 2022
Simple Speech to Text, Text to Speech

Simple Speech to Text, Text to Speech 1. Download Repository Opsi 1 Download repository ini, extract di lokasi yang diinginkan Opsi 2 Jika sudah famil

Habib Abdurrasyid 5 Dec 28, 2021
Library for Russian imprecise rhymes generation

TOM RHYMER Library for Russian imprecise rhymes generation. Quick Start Generate rhymes by any given rhyme scheme (aabb, abab, aaccbb, etc ...): from

Alexey Karnachev 6 Oct 18, 2022
Tensorflow implementation of paper: Learning to Diagnose with LSTM Recurrent Neural Networks.

Multilabel time series classification with LSTM Tensorflow implementation of model discussed in the following paper: Learning to Diagnose with LSTM Re

Aaqib 552 Nov 28, 2022
TTS is a library for advanced Text-to-Speech generation.

TTS is a library for advanced Text-to-Speech generation. It's built on the latest research, was designed to achieve the best trade-off among ease-of-training, speed and quality. TTS comes with pretra

Mozilla 6.5k Jan 08, 2023
Implementation of Token Shift GPT - An autoregressive model that solely relies on shifting the sequence space for mixing

Token Shift GPT Implementation of Token Shift GPT - An autoregressive model that relies solely on shifting along the sequence dimension and feedforwar

Phil Wang 32 Oct 14, 2022