๐Ÿฆ… Pretrained BigBird Model for Korean (up to 4096 tokens)

Overview

Pretrained BigBird Model for Korean

What is BigBird โ€ข How to Use โ€ข Pretraining โ€ข Evaluation Result โ€ข Docs โ€ข Citation

ํ•œ๊ตญ์–ด | English

Apache 2.0 Issues linter DOI

What is BigBird?

BigBird: Transformers for Longer Sequences์—์„œ ์†Œ๊ฐœ๋œ sparse-attention ๊ธฐ๋ฐ˜์˜ ๋ชจ๋ธ๋กœ, ์ผ๋ฐ˜์ ์ธ BERT๋ณด๋‹ค ๋” ๊ธด sequence๋ฅผ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๐Ÿฆ… Longer Sequence - ์ตœ๋Œ€ 512๊ฐœ์˜ token์„ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๋Š” BERT์˜ 8๋ฐฐ์ธ ์ตœ๋Œ€ 4096๊ฐœ์˜ token์„ ๋‹ค๋ฃธ

โฑ๏ธ Computational Efficiency - Full attention์ด ์•„๋‹Œ Sparse Attention์„ ์ด์šฉํ•˜์—ฌ O(n2)์—์„œ O(n)์œผ๋กœ ๊ฐœ์„ 

How to Use

  • ๐Ÿค— Huggingface Hub์— ์—…๋กœ๋“œ๋œ ๋ชจ๋ธ์„ ๊ณง๋ฐ”๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:)
  • ์ผ๋ถ€ ์ด์Šˆ๊ฐ€ ํ•ด๊ฒฐ๋œ transformers>=4.11.0 ์‚ฌ์šฉ์„ ๊ถŒ์žฅํ•ฉ๋‹ˆ๋‹ค. (MRC ์ด์Šˆ ๊ด€๋ จ PR)
  • BigBirdTokenizer ๋Œ€์‹ ์— BertTokenizer ๋ฅผ ์‚ฌ์šฉํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. (AutoTokenizer ์‚ฌ์šฉ์‹œ BertTokenizer๊ฐ€ ๋กœ๋“œ๋ฉ๋‹ˆ๋‹ค.)
  • ์ž์„ธํ•œ ์‚ฌ์šฉ๋ฒ•์€ BigBird Tranformers documentation์„ ์ฐธ๊ณ ํ•ด์ฃผ์„ธ์š”.
from transformers import AutoModel, AutoTokenizer

model = AutoModel.from_pretrained("monologg/kobigbird-bert-base")  # BigBirdModel
tokenizer = AutoTokenizer.from_pretrained("monologg/kobigbird-bert-base")  # BertTokenizer

Pretraining

์ž์„ธํ•œ ๋‚ด์šฉ์€ [Pretraining BigBird] ์ฐธ๊ณ 

Hardware Max len LR Batch Train Step Warmup Step
KoBigBird-BERT-Base TPU v3-8 4096 1e-4 32 2M 20k
  • ๋ชจ๋‘์˜ ๋ง๋ญ‰์น˜, ํ•œ๊ตญ์–ด ์œ„ํ‚ค, Common Crawl, ๋‰ด์Šค ๋ฐ์ดํ„ฐ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šต
  • ITC (Internal Transformer Construction) ๋ชจ๋ธ๋กœ ํ•™์Šต (ITC vs ETC)

Evaluation Result

1. Short Sequence (<=512)

์ž์„ธํ•œ ๋‚ด์šฉ์€ [Finetune on Short Sequence Dataset] ์ฐธ๊ณ 

NSMC
(acc)
KLUE-NLI
(acc)
KLUE-STS
(pearsonr)
Korquad 1.0
(em/f1)
KLUE MRC
(em/rouge-w)
KoELECTRA-Base-v3 91.13 86.87 93.14 85.66 / 93.94 59.54 / 65.64
KLUE-RoBERTa-Base 91.16 86.30 92.91 85.35 / 94.53 69.56 / 74.64
KoBigBird-BERT-Base 91.18 87.17 92.61 87.08 / 94.71 70.33 / 75.34

2. Long Sequence (>=1024)

์ž์„ธํ•œ ๋‚ด์šฉ์€ [Finetune on Long Sequence Dataset] ์ฐธ๊ณ 

TyDi QA
(em/f1)
Korquad 2.1
(em/f1)
Fake News
(f1)
Modu Sentiment
(f1-macro)
KLUE-RoBERTa-Base 76.80 / 78.58 55.44 / 73.02 95.20 42.61
KoBigBird-BERT-Base 79.13 / 81.30 67.77 / 82.03 98.85 45.42

Docs

Citation

KoBigBird๋ฅผ ์‚ฌ์šฉํ•˜์‹ ๋‹ค๋ฉด ์•„๋ž˜์™€ ๊ฐ™์ด ์ธ์šฉํ•ด์ฃผ์„ธ์š”.

@software{jangwon_park_2021_5654154,
  author       = {Jangwon Park and Donggyu Kim},
  title        = {KoBigBird: Pretrained BigBird Model for Korean},
  month        = nov,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {1.0.0},
  doi          = {10.5281/zenodo.5654154},
  url          = {https://doi.org/10.5281/zenodo.5654154}
}

Contributors

Jangwon Park and Donggyu Kim

Acknowledgements

KoBigBird๋Š” Tensorflow Research Cloud (TFRC) ํ”„๋กœ๊ทธ๋žจ์˜ Cloud TPU ์ง€์›์œผ๋กœ ์ œ์ž‘๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

๋˜ํ•œ ๋ฉ‹์ง„ ๋กœ๊ณ ๋ฅผ ์ œ๊ณตํ•ด์ฃผ์‹  Seyun Ahn๋‹˜๊ป˜ ๊ฐ์‚ฌ๋ฅผ ์ „ํ•ฉ๋‹ˆ๋‹ค.

You might also like...
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Generating Korean Slogans with phonetic and structural repetition
Generating Korean Slogans with phonetic and structural repetition

LexPOS_ko Generating Korean Slogans with phonetic and structural repetition Generating Slogans with Linguistic Features LexPOS is a sequence-to-sequen

Korean extractive summarization. 2021 AI ํ…์ŠคํŠธ ์š”์•ฝ ์˜จ๋ผ์ธ ํ•ด์ปคํ†ค ํ™”์„ฑ๊ฐˆ๋„๋‹ˆ๊นŒํŒ€ ์ฝ”๋“œ
Korean extractive summarization. 2021 AI ํ…์ŠคํŠธ ์š”์•ฝ ์˜จ๋ผ์ธ ํ•ด์ปคํ†ค ํ™”์„ฑ๊ฐˆ๋„๋‹ˆ๊นŒํŒ€ ์ฝ”๋“œ

korean extractive summarization 2021 AI ํ…์ŠคํŠธ ์š”์•ฝ ์˜จ๋ผ์ธ ํ•ด์ปคํ†ค ํ™”์„ฑ๊ฐˆ๋„๋‹ˆ๊นŒํŒ€ ์ฝ”๋“œ Leaderboard Notice Text Summarization with Pretrained Encoders์— ๋‚˜์˜ค๋Š” bertsumext๋ชจ๋ธ(ext

Training code for Korean multi-class sentiment analysis

KoSentimentAnalysis Bert implementation for the Korean multi-class sentiment analysis ์™œ ํ•œ๊ตญ์–ด ๊ฐ์ • ๋‹ค์ค‘๋ถ„๋ฅ˜ ๋ชจ๋ธ์€ ๊ฑฐ์˜ ์—†๋Š” ๊ฒƒ์ผ๊นŒ?์—์„œ ์‹œ์ž‘๋œ ํ”„๋กœ์ ํŠธ Environment: Pytorch, Da

Korean Sentence Embedding Repository

Korean-Sentence-Embedding ๐Ÿญ Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset.

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset. Through its Python API, the pretrained model can be fine-tuned on any protein-related task in a matter of minutes. Based on our experiments with a wide range of benchmarks, ProteinBERT usually achieves state-of-the-art performance. ProteinBERT is built on TenforFlow/Keras.

IndoBERTweet is the first large-scale pretrained model for Indonesian Twitter. Published at EMNLP 2021 (main conference)

IndoBERTweet ๐Ÿฆ ๐Ÿ‡ฎ๐Ÿ‡ฉ 1. Paper Fajri Koto, Jey Han Lau, and Timothy Baldwin. IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effe

BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

Crie tokens de autenticaรงรฃo รญntegros e seguros com UToken.

UToken - Tokens seguros. UToken (ou Unhandleable Token) รฉ uma bilioteca criada para ser utilizada na geraรงรฃo de tokens seguros e รญntegros, ou seja, nรฃ

Comments
  • Pretraining Epoch ์งˆ๋ฌธ

    Pretraining Epoch ์งˆ๋ฌธ

    Checklist

    • [x] I've searched the project's issues

    โ“ Question

    ์•ˆ๋…•ํ•˜์„ธ์š” ์ €๋Š” ํ˜„์žฌ ์นœ๊ตฌ๋“ค๊ณผ ํ•จ๊ป˜ 4096 ํ† ํฐ์„ ์ž…๋ ฅ๋ฐ›์•„ ์š”์•ฝ ํƒœ์Šคํฌ๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์„ ๋งŒ๋“ค๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ฒ˜์Œ์—” ๋น…๋ฒ„๋“œ + ๋ฒ„ํŠธ ์กฐํ•ฉ์œผ๋กœ ํ•ด๋ณด๋ ค๊ณ  ํ–ˆ๋Š”๋ฐ, ์ด๋ฏธ monologg ๋‹˜๊ป˜์„œ ๋งŒ๋“ค์–ด์ฃผ์…จ๋”๋ผ๊ตฌ์š” ใ…Žใ…Ž ๊ทธ๋ž˜์„œ ๋กฑํฌ๋จธ + ๋ฐ”ํŠธ + ํŽ˜๊ฐ€์ˆ˜์Šค ์กฐํ•ฉ์œผ๋กœ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜๋ ค ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. pretrained๋œ KoBart๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์–ดํ…์…˜์„ ๋กฑํฌ๋จธ๋กœ ๋ฐ”๊พผ ํ›„, ํŽ˜๊ฐ€์ˆ˜์Šค task๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ตฌ์กฐ๋กœ ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค.

    ํ˜„์žฌ 13GB์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ์•„์„œ ์ „์ฒ˜๋ฆฌ์™€ ๋ฐ์ดํ„ฐ๋กœ๋” ์ž‘์„ฑ, ๋ชจ๋ธ ์ฝ”๋“œ๊นŒ์ง€๋Š” ์™„๋ฃŒํ•œ ์ƒํƒœ์ž…๋‹ˆ๋‹ค. ์ด๋ฒˆ ์ฃผ ๋‚ด๋กœ ํ•™์Šต์„ ์ง„ํ–‰ํ•˜๋ ค ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.

    ์ €ํฌ๊ฐ€ ๊ฐ€์ง„ GPU๋กœ๋Š” ๋Œ€๋žต ์ดํ‹€์ด๋ฉด 1 ์—ํฌํฌ๋ฅผ ๋Œ ์ˆ˜ ์žˆ์„ ๊ฒƒ ๊ฐ™์€๋ฐ, monologg๋‹˜๊ป˜์„œ๋Š” KoBirBird ๋ชจ๋ธ ๊ฐœ๋ฐœ ์‹œ ์—ํฌํฌ๋ฅผ ์–ผ๋งˆ๋‚˜ ๋„์…จ๋Š”์ง€ ์—ฌ์ญค๋ณด๊ณ  ์‹ถ์Šต๋‹ˆ๋‹ค.

    ์•„๋ฌด๋ž˜๋„ pretrained ๋œ ๋ชจ๋ธ์„ ๊ฐ€์ ธ๋‹ค ์“ฐ๋‹ค๋ณด๋‹ˆ ์—ํฌํฌ๋ฅผ ๋งŽ์ด ๋Œ ํ•„์š”๋Š” ์—†์„ ๊ฒƒ ๊ฐ™์€๋ฐ, ๊ธฐ์ค€์ ์œผ๋กœ ์‚ผ๊ณ  ์‹ถ์–ด์„œ์š”!

    ๋ง์ด ๊ธธ์–ด์กŒ๋Š”๋ฐ ์š”์•ฝํ•˜์ž๋ฉด, KoBirBird ํ•™์Šต ์‹œ ์—ํฌํฌ๋ฅผ ์–ผ๋งˆ๋‚˜ ์ฃผ์…จ๋Š”์ง€ ๊ถ๊ธˆํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ๊ทธ ๊ธฐ์ค€์€ ๋ฌด์—‡์œผ๋กœ ์‚ผ์œผ์…จ๋Š”์ง€๋„ ๊ถ๊ธˆํ•ฉ๋‹ˆ๋‹ค.

    question 
    opened by KimJaehee0725 2
  • Specific information about this model.

    Specific information about this model.

    Checklist

    • [ x ] I've searched the project's issues

    โ“ Question

    • You mentioned "๋ชจ๋‘์˜ ๋ง๋ญ‰์น˜, ํ•œ๊ตญ์–ด ์œ„ํ‚ค, Common Crawl, ๋‰ด์Šค ๋ฐ์ดํ„ฐ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šต" and I want to know the size of total corpus for pre-training.

    • Also I want to know the vocab size of this model.

    ๐Ÿ“Ž Additional context

    question 
    opened by midannii 2
  • Fix some minors

    Fix some minors

    Description

    ์ฝ”๋“œ์™€ ์ฃผ์„ ๋“ฑ์„ ์ฝ๋‹ค๊ฐ€ ๋ณด์ธ ์ž‘์€ ์˜คํƒ€ ๋“ฑ์„ ์ˆ˜์ •ํ–ˆ์Šต๋‹ˆ๋‹ค

    ๋‹ค์–‘ํ•œ ๋…ธํ•˜์šฐ๋ฅผ ์•„๋‚Œ์—†์ด ๊ณต์œ ํ•ด์ฃผ์‹  @monologg , @donggyukimc ์—๊ฒŒ ๊ฐ์‚ฌ์˜ ๋ง์”€๋“œ๋ฆฝ๋‹ˆ๋‹ค.

    ์ดํ›„์—๋Š” GPU ํ™˜๊ฒฝ์—์„œ finetuning์„ ํ…Œ์ŠคํŠธํ•ด ๋ณผ ์˜ˆ์ •์ž…๋‹ˆ๋‹ค ๊ณ ๋ง™์Šต๋‹ˆ๋‹ค.

    Related Issue

    chore 
    opened by sackoh 0
Releases(v1.0.0)
ไธญๆ–‡ๅŒป็–—ไฟกๆฏๅค„็†ๅŸบๅ‡†CBLUE: A Chinese Biomedical LanguageUnderstanding Evaluation Benchmark

English | ไธญๆ–‡่ฏดๆ˜Ž CBLUE AI (Artificial Intelligence) is playing an indispensabe role in the biomedical field, helping improve medical technology. For fur

452 Dec 30, 2022
Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021.

capbot-siic Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021. Problem Inspiration A plethora

Aryan Kargwal 19 Feb 17, 2022
Simple telegram bot to convert files into direct download link.you can use telegram as a file server ๐Ÿช

TGCLOUD ๐Ÿช Simple telegram bot to convert files into direct download link.you can use telegram as a file server ๐Ÿช Features Easy to Deploy Heroku Supp

Mr.Acid dev 6 Oct 18, 2022
A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

GuwenModels: ๅคๆ–‡่‡ช็„ถ่ฏญ่จ€ๅค„็†ๆจกๅž‹ๅˆ้›†, ๆ”ถๅฝ•ไบ’่”็ฝ‘ไธŠ็š„ๅคๆ–‡็›ธๅ…ณๆจกๅž‹ๅŠ่ต„ๆบ. A collection of Classical Chinese natural language processing models, including Classical Chinese related models and resources on the Internet.

Ethan 66 Dec 26, 2022
Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Adversarial Purification with Score-based Generative Models by Jongmin Yoon, Sung Ju Hwang, Juho Lee This repository includes the official PyTorch imp

15 Dec 15, 2022
I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive

I label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, positive. Obstacles like sentence negation, sarcasm, terseness, language ambiguity, and many others

1 Jan 13, 2022
Pipeline for chemical image-to-text competition

BMS-Molecular-Translation Introduction This is a pipeline for Bristol-Myers Squibb โ€“ Molecular Translation by Vadim Timakin and Maksim Zhdanov. We got

Maksim Zhdanov 7 Sep 20, 2022
Arabic speech recognition, classification and text-to-speech.

klaam Arabic speech recognition, classification and text-to-speech using many advanced models like wave2vec and fastspeech2. This repository allows tr

ARBML 177 Dec 27, 2022
Korean extractive summarization. 2021 AI ํ…์ŠคํŠธ ์š”์•ฝ ์˜จ๋ผ์ธ ํ•ด์ปคํ†ค ํ™”์„ฑ๊ฐˆ๋„๋‹ˆ๊นŒํŒ€ ์ฝ”๋“œ

korean extractive summarization 2021 AI ํ…์ŠคํŠธ ์š”์•ฝ ์˜จ๋ผ์ธ ํ•ด์ปคํ†ค ํ™”์„ฑ๊ฐˆ๋„๋‹ˆ๊นŒํŒ€ ์ฝ”๋“œ Leaderboard Notice Text Summarization with Pretrained Encoders์— ๋‚˜์˜ค๋Š” bertsumext๋ชจ๋ธ(ext

3 Aug 10, 2022
Question answering app is used to answer for a user given question from user given text.

Question answering app is used to answer for a user given question from user given text.It is created using HuggingFace's transformer pipeline and streamlit python packages.

Siva Prakash 3 Apr 05, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 884 Nov 11, 2022
Unofficial Python library for using the Polish Wordnet (plWordNet / Sล‚owosieฤ‡)

Polish Wordnet Python library Simple, easy-to-use and reasonably fast library for using the Sล‚owosieฤ‡ (also known as PlWordNet) - a lexico-semantic da

Max Adamski 12 Dec 23, 2022
DeepAmandine is an artificial intelligence that allows you to talk to it for hours, you won't know the difference.

DeepAmandine This is an artificial intelligence based on GPT-3 that you can chat with, it is very nice and makes a lot of jokes. We wish you a good ex

BuyWithCrypto 3 Apr 19, 2022
Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation

Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation Official Code Repository for the paper "Unsupervised Documen

NLP*CL Laboratory 2 Oct 26, 2021
Beyond Accuracy: Behavioral Testing of NLP models with CheckList

CheckList This repository contains code for testing NLP Models as described in the following paper: Beyond Accuracy: Behavioral Testing of NLP models

Marco Tulio Correia Ribeiro 1.8k Dec 28, 2022
NeurIPS'21: Probabilistic Margins for Instance Reweighting in Adversarial Training (Pytorch implementation).

source code for NeurIPS21 paper robabilistic Margins for Instance Reweighting in Adversarial Training

9 Dec 20, 2022
To be a next-generation DL-based phenotype prediction from genome mutations.

Sequence -----------+-- 3D_structure -- 3D_module --+ +-- ? | |

Eric Alcaide 18 Jan 11, 2022
Anomaly Detection ์ด์ƒ์น˜ ํƒ์ง€ ์ „์ฒ˜๋ฆฌ ๋ชจ๋“ˆ

Anomaly Detection ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์ด์ƒ์น˜ ํƒ์ง€ 1. Kernel Density Estimation์„ ํ™œ์šฉํ•œ ์ด์ƒ์น˜ ํƒ์ง€ train_data_path์™€ test_data_path์— ์กด์žฌํ•˜๋Š” ์‹œ์  ์ •๋ณด๋ฅผ ํฌํ•จํ•˜๊ณ  ์žˆ๋Š” csv ํ˜•ํƒœ์˜ train data์™€

CLUST-consortium 43 Nov 28, 2022
Extract city and country mentions from Text like GeoText without regex, but FlashText, a Aho-Corasick implementation.

flashgeotext โšก ๐ŸŒ Extract and count countries and cities (+their synonyms) from text, like GeoText on steroids using FlashText, a Aho-Corasick impleme

Ben 57 Dec 16, 2022