中文医疗信息处理基准CBLUE: A Chinese Biomedical LanguageUnderstanding Evaluation Benchmark

Overview

English | 中文说明

CBLUE

AI (Artificial Intelligence) is playing an indispensabe role in the biomedical field, helping improve medical technology. For further accelerating AI research in the biomedical field, we present Chinese Biomedical Language Understanding Evaluation (CBLUE), including datasets collected from real-world biomedical scenarios, baseline models, and an online platform for model evaluation, comparison and analysis.

CBLUE Benchmark

We evaluate the current 11 Chinese pre-trained models on the eight biomedical language understanding tasks and report the baselines of these tasks.

Model CMedEE CMedIE CDN CTC STS QIC QTR QQR Avg.
BERT-base 62.1 54.0 55.4 69.2 83.0 84.3 60.0 84.7 69.0
BERT-wwm-ext-base 61.7 54.0 55.4 70.1 83.9 84.5 60.9 84.4 69.4
ALBERT-tiny 50.5 35.9 50.2 61.0 79.7 75.8 55.5 79.8 61.1
ALBERT-xxlarge 61.8 47.6 37.5 66.9 84.8 84.8 62.2 83.1 66.1
RoBERTa-large 62.1 54.4 56.5 70.9 84.7 84.2 60.9 82.9 69.6
RoBERTa-wwm-ext-base 62.4 53.7 56.4 69.4 83.7 85.5 60.3 82.7 69.3
RoBERTa-wwm-ext-large 61.8 55.9 55.7 69.0 85.2 85.3 62.8 84.4 70.0
PCL-MedBERT 60.6 49.1 55.8 67.8 83.8 84.3 59.3 82.5 67.9
ZEN 61.0 50.1 57.8 68.6 83.5 83.2 60.3 83.0 68.4
MacBERT-base 60.7 53.2 57.7 67.7 84.4 84.9 59.7 84.0 69.0
MacBERT-large 62.4 51.6 59.3 68.6 85.6 82.7 62.9 83.5 69.6
Human 67.0 66.0 65.0 78.0 93.0 88.0 71.0 89.0 77.1

Baseline of tasks

We present the baseline models on the biomedical tasks and release corresponding codes for a quick start.

Requirements

python3 / pytorch 1.7 / transformers 4.5.1 / jieba / gensim / sklearn

Data preparation

Download dataset

The whole zip package includes the datasets of 8 biomedical NLU tasks (more detail in the following section). Every task includes the following files:

├── {Task}
|  └── {Task}_train.json
|  └── {Task}_test.json
|  └── {Task}_dev.json
|  └── example_gold.json
|  └── example_pred.json
|  └── README.md

Notice: a few tasks have additional files, e.g. it includes 'category.xlsx' file in the CHIP-CTC task.

You can download Chinese pre-trained models according to your need (download URLs are provided above). With Huggingface-Transformers , the models above could be easily accessed and loaded.

The reference directory:

├── CBLUE         
|  └── baselines
|     └── run_classifier.py
|     └── ...
|  └── examples
|     └── run_qqr.sh
|     └── ...
|  └── cblue
|  └── CBLUEDatasets
|     └── KUAKE-QQR
|     └── ...
|  └── data
|     └── output
|     └── model_data
|        └── bert-base
|        └── ...
|     └── result_output
|        └── KUAKE-QQR_test.json
|        └── ...

Running examples

The shell files of training and evaluation for every task are provided in examples/ , and could directly run.

Also, you can utilize the running codes in baselines/ , and write your shell files according to your need:

  • baselines/run_classifer.py: support {sts, qqr, qtr, qic, ctc, ee} tasks;
  • baselines/run_cdn.py: support {cdn} task;
  • baselines/run_ie.py: support {ie} task.

Training models

Running shell files: bash examples/run_{task}.sh, and the contents of shell files are as follow:

DATA_DIR="CBLUEDatasets"

TASK_NAME="qqr"
MODEL_TYPE="bert"
MODEL_DIR="data/model_data"
MODEL_NAME="chinese-bert-wwm"
OUTPUT_DIR="data/output"
RESULT_OUTPUT_DIR="data/result_output"

MAX_LENGTH=128

python baselines/run_classifier.py \
    --data_dir=${DATA_DIR} \
    --model_type=${MODEL_TYPE} \
    --model_dir=${MODEL_DIR} \
    --model_name=${MODEL_NAME} \
    --task_name=${TASK_NAME} \
    --output_dir=${OUTPUT_DIR} \
    --result_output_dir=${RESULT_OUTPUT_DIR} \
    --do_train \
    --max_length=${MAX_LENGTH} \
    --train_batch_size=16 \
    --eval_batch_size=16 \
    --learning_rate=3e-5 \
    --epochs=3 \
    --warmup_proportion=0.1 \
    --earlystop_patience=3 \
    --logging_steps=250 \
    --save_steps=250 \
    --seed=2021

Notice: the best checkpoint is saved in OUTPUT_DIR/MODEL_NAME/.

  • MODEL_TYPE: support {bert, roberta, albert, zen} model types;
  • MODEL_NAME: support {bert-base, bert-wwm-ext, albert-tiny, albert-xxlarge, zen, pcl-medbert, roberta-large, roberta-wwm-ext-base, roberta-wwm-ext-large, macbert-base, macbert-large} Chinese pre-trained models.

The MODEL_TYPE-MODEL_NAME mappings are listed below.

MODEL_TYPE MODEL_NAME
bert bert-base, bert-wwm-ext, pcl-medbert, macbert-base, macbert-large
roberta roberta-large, roberta-wwm-ext-base, roberta-wwm-ext-large
albert albert-tiny, albert-xxlarge
zen zen

Inference & generation of results

Running shell files: base examples/run_{task}.sh predict, and the contents of shell files are as follows:

DATA_DIR="CBLUEDatasets"

TASK_NAME="qqr"
MODEL_TYPE="bert"
MODEL_DIR="data/model_data"
MODEL_NAME="chinese-bert-wwm"
OUTPUT_DIR="data/output"
RESULT_OUTPUT_DIR="data/result_output"

MAX_LENGTH=128

python baselines/run_classifier.py \
    --data_dir=${DATA_DIR} \
    --model_type=${MODEL_TYPE} \
    --model_name=${MODEL_NAME} \
    --model_dir=${MODEL_DIR} \
    --task_name=${TASK_NAME} \
    --output_dir=${OUTPUT_DIR} \
    --result_output_dir=${RESULT_OUTPUT_DIR} \
    --do_predict \
    --max_length=${MAX_LENGTH} \
    --eval_batch_size=16 \
    --seed=2021

Notice: the result of prediction {TASK_NAME}_test.json will be generated in RESULT_OUTPUT_DIR .

Submit results

Compressing RESULT_OUTPUT_DIR as .zip file and submitting the file, you will get the score of evaluation on these biomedical NLU tasks, and your ranking!

Submit your results!

submit

Introduction of tasks

For promoting the development and the application of language model in the biomedical field, we collect data from real-world biomedical scenarios and release the eight biomedical NLU (natural language understanding) tasks, including information extraction from the medical text (named entity recognition, relation extraction), normalization of the medical term, medical text classification, medical sentence similarity estimation and medical QA.

Dataset Task Train Dev Test Evaluation Metrics
CMeEE NER 15,000 5,000 3,000 Micro F1
CMeIE Relation Extraction 14,339 3,585 4,482 Micro F1
CHIP-CDN Diagnosis Normalization 6,000 2,000 10,192 Micro F1
CHIP-STS Sentence Similarity 16,000 4,000 10,000 Macro F1
CHIP-CTC Sentence Classification 22,962 7,682 10,000 Macro F1
KUAKE-QIC Sentence Classification 6,931 1,955 1,944 Accuracy
KUAKE-QTR NLI 24,174 2,913 5,465 Accuracy
KUAKE-QQR NLI 15,000 1,600 1,596 Accuracy

CMeEE

The evaluation task is the recognition of the named entity on the medical text. Given schema data and medical sentences, models are expected to extract entity about clinical information and classify these entities exactly.

example { "text": "呼吸肌麻痹和呼吸中枢受累患者因呼吸不畅可并发肺炎、肺不张等。", "entities": [ { "start_idx": 0, "end_idx": 2, "type": "bod", "entity: "呼吸肌" }, { "start_idx": 0, "end_idx": 4, "type": "sym", "entity: "呼吸肌麻痹" }, { "start_idx": 6, "end_idx": 9, "type": "bod", "entity: "呼吸中枢" }, { "start_idx": 6, "end_idx": 11, "type": "sym", "entity: "呼吸中枢受累" }, { "start_idx": 15, "end_idx": 18, "type": "sym", "entity: "呼吸不畅" }, { "start_idx": 22, "end_idx": 23, "type": "dis", "entity: "肺炎" }, { "start_idx": 25, "end_idx": 27, "type": "dis", "entity: "肺不张" } ] }

CMeIE

The evaluation task is the extraction of entity relation on the medical text. Given schema and medical sentences, models are expected to automatically extract triples=[(S1, P1, O1), (S2, P2, O2)…] satisfying the constraint of schema. The schema defines the category of the predicate and corresponding subject and object, e.g.

(“subject_type”:“疾病”,“predicate”: “药物治疗”,“object_type”:“药物”) (“subject_type”:“疾病”,“predicate”: “实验室检查”,“object_type”:“检查”)

example { "text": "慢性胰腺炎@ ###低剂量放射 自1964年起,有几项病例系列报道称外照射 (5-50Gy) 可以有效改善慢性胰腺炎患者的疼痛症状。慢性胰腺炎@从概念上讲,外照射可以起到抗炎和止痛作用,并且已经开始被用于非肿瘤性疼痛的治疗。", "spo_list": [ { "Combined": true, "predicate": "放射治疗", "subject": "慢性胰腺炎", "subject_type": "疾病", "object": { "@value": "外照射" }, "object_type": { "@value": "其他治疗" } }, { "Combined": true, "predicate": "放射治疗", "subject": "非肿瘤性疼痛", "subject_type": "疾病", "object": { "@value": "外照射" }, "object_type": { "@value": "其他治疗" } } } ] }

CHIP-CDN

The evaluation task is the normalization of the diagnosis entity from the Chinese medical record. Given a diagnosis entity, models are expected to return corresponding standard terms.

example [ { "text": "左膝退变伴游离体", "normalized_result": "膝骨关节病##膝关节游离体" }, { "text": "糖尿病反复低血糖;骨质疏松;高血压冠心病不稳定心绞痛", "normalized_result": "糖尿病性低血糖症##骨质疏松##高血压##冠状动脉粥样硬化性心脏病##不稳定性心绞痛" }, { "text": "右乳腺癌IV期", "normalized_result": "乳腺恶性肿瘤##癌" } ]

CHIP-CTC

In this evaluation task, given 44 semantic categories of screening standard (more detail in category.xlsx) and some description about Chinese clinical screening standard, models are expected to return every description's specific category.

example [ { "id": "s1", "label": "Multiple", "text": " 7.凝血功能异常(INR>1.5 或凝血酶原时间(PT)>ULN+4 秒或 APTT >1.5 ULN),具有出血倾向或正在接受溶栓或抗凝治疗;" }, { "id": "s2", "label": "Addictive Behavior", "text": " (2)重度吸烟(大于10支/天)及酗酒患者" }, { "id": "s3", "label": "Therapy or Surgery", "text": " 13. 有器官移植病史或正等待器官移植的患者;" } ]

CHIP-STS

In this evaluation task, given pairs of sentences involving five different diseases, models are expected to judge the semantic similarity of the pair of sentences.

example [ { "id": "1", "text1": "糖尿病能吃减肥药吗?能治愈吗?", "text2": "糖尿病为什么不能吃减肥药", "label": "1", "category": "diabetes" }, { "id": "2", "text1": "有糖尿病和前列腺怎么保健怎样治疗", "text2": "患有糖尿病和前列腺怎么办?", "label": "1", "category": "diabetes" }, { "id": "3", "text1": "我也是乙肝携带患者,可以办健康证吗在", "text2": "乙肝五项化验单怎么看呢", "label": "0", "category": "hepatitis" } ]

KUAKE-QIC

In this evaluation task, given a medical query, models are expected to classify the intention of patients. These medical queries have 11 categories: diagnosis, cause, method, advice, metric explain, disease expression, result, attention, effect, price, other.

example [ { "id": "s1", "query": "心肌缺血如何治疗与调养呢?", "label": "治疗方案" }, { "id": "s2", "query": "19号来的月经,25号服用了紧急避孕药本月5号,怎么办?", "label": "治疗方案" }, { "id": "s3", "query": "什么叫痔核脱出?什么叫外痔?", "label": "疾病表述" } ]

KUAKE-QTR

In this evaluation task, given a pair of query and title, models are expected to predict whether the topic of the pair query and title is consistent and the extent of their consistency.

example [ { "id": "s1", "query": "咳嗽到腹肌疼", "title": "感冒咳嗽引起的腹肌疼痛,是怎么回事?", "label": "2" }, { "id": "s2", "query": "烂牙神经的药对怀孕胚胎", "title": "怀孕两个月治疗牙齿烂牙神经用了含砷失活剂 怀孕两个月治疗...", "label": "1" }, { "id": "s3", "query": "怀孕可以空腹吃葡萄吗", "title": "怀孕四个月,今早空腹吃了葡萄,然后肚子就一直胀胀的...", "label": "1" } ]

KUAKE-QQR

In this evaluation task, given a pair of queries, models are expected to predict the extent of similarity between them.

example [ { "id": "s1", "query": "小孩子打呼噜什么原因", "title": "孩子打呼噜是什么原因", "label": "2" }, { "id": "s2", "query": "小孩子打呼噜什么原因", "title": "宝宝打呼噜是什么原因", "label": "0" }, { "id": "s3", "query": "小孩子打呼噜什么原因", "title": "小儿打呼噜是什么原因引起的", "label": "2" } ]

Quick start

The modules of Data Processor, Model trainer could be found in cblue/. You can easily construct your code, train and evaluate your own models and methods. The corresponding Data Processor, Dataset, Trainer of eight tasks are listed below:

Task Data Processor (cblue.data) Dataset (cblue.data) Trainer (cblue.trainer)
CMeEE EEDataProcessor EEDataset EETrainer
CMeIE ERDataProcessor/REDataProcessor ERDataset/REDataset ERTrainer/RETrainer
CHIP-CDN CDNDataProcessor CDNDataset CDNForCLSTrainer/CDNForNUMTrainer
CHIP-CTC CTCDataProcessor CTCDataset CTCTrainer
CHIP-STS STSDataProcessor STSDataset STSTrainer
KUAKE-QIC QICDataProcessor QICDataset QICTrainer
KUAKE-QQR QQRDataProcessor QQRDataset QQRTrainer
KUAKE-QTR QTRDataProcessor QTRDataset QTRTrainer

Example for CMeEE

from cblue.data import EEDataProcessor, EEDataset
from cblue.trainer import EETrainer
from cblue.metrics import ee_metric, ee_commit_prediction

# get samples
data_processor = EEDataProcessor(root=...)
train_samples = data_processor.get_train_sample()
eval_samples = data_processor.get_dev_sample()
test_samples = data_processor,get_test_sample()

# 'torch.Dataset'
train_dataset = EEDataset(train_sample, tokenizer=..., mode='train', max_length=...)

# training model
trainer = EETrainer(...)
trainer.train(...)

# predicton and generation of result
test_dataset = EEDataset(test_sample, tokenizer=..., mode='test', max_length=...)
trainer.predict(test_dataset)

Training setup

We list the hyper-parameters of every tasks during the baseline experiments.

Common hyper-parameters

Param Value
warmup_proportion 0.1
weight_decay 0.01
adam_epsilon 1e-8
max_grad_norm 1.0

CMeEE

Hyper-parameters for the training of pre-trained models with a token classification head on top for named entity recognition of the CMeEE task.

Model epoch batch_size max_length learning_rate
bert-base 5 32 128 4e-5
bert-wwm-ext 5 32 128 4e-5
roberta-wwm-ext 5 32 128 4e-5
roberta-wwm-ext-large 5 12 65 2e-5
roberta-large 5 12 65 2e-5
albert-tiny 10 32 128 5e-5
albert-xxlarge 5 12 65 1e-5
PCL-MedBERT 5 32 128 4e-5

CMeIE-ER

Hyper-parameters for the training of pre-trained models with a token-level classifier for subject and object recognition of the CMeIE task.

Model epoch batch_size max_length learning_rate
bert-base 7 32 128 5e-5
bert-wwm-ext 7 32 128 5e-5
roberta-wwm-ext 7 32 128 4e-5
roberta-wwm-ext-large 7 16 80 4e-5
roberta-large 7 16 80 2e-5
albert-tiny 10 32 128 4e-5
albert-xxlarge 7 16 80 1e-5
PCL-MedBERT 7 32 128 4e-5

CMeIE-RE

Hyper-parameters for the training of pre-trained models with a classifier for the entity pairs relation prediction of the CMeIE task.

Model epoch batch_size max_length learning_rate
bert-base 8 32 128 5e-5
bert-wwm-ext 8 32 128 5e-5
roberta-wwm-ext 8 32 128 4e-5
roberta-wwm-ext-large 8 16 80 4e-5
roberta-large 8 16 80 2e-5
albert-tiny 10 32 128 4e-5
albert-xxlarge 8 16 80 1e-5
PCL-MedBERT 8 32 128 4e-5

CHIP-CTC

Hyper-parameters for the training of pre-trained models with a sequence classification head on top for screening criteria classification of the CHIP-CTC task.

Model epoch batch_size max_length learning_rate
bert-base 5 32 128 5e-5
bert-wwm-ext 5 32 128 5e-5
roberta-wwm-ext 5 32 128 4e-5
roberta-wwm-ext-large 5 20 50 3e-5
roberta-large 5 20 50 4e-5
albert-tiny 10 32 128 4e-5
albert-xxlarge 5 20 50 1e-5
PCL-MedBERT 5 32 128 4e-5

CHIP-CDN-cls

Hyper-parameters for the CHIP-CDN task. We model the CHIP-CDN task with two stages: recall stage and ranking stage. num_negative_sample sets the number of negative samples sampled for the training ranking model during the ranking stage. recall_k sets the number of candidates recalled in the recall stage.

Param Value
recall_k 200
num_negative_sample 10

Hyper-parameters for the training of pre-trained models with a sequence classifier for the ranking model of the CHIP-CDN task. We encode the pairs of the original term and standard phrase from candidates recalled during the recall stage and then pass the pooled output to the classifier, which predicts the relevance between the original term and standard phrase.

Model epoch batch_size max_length learning_rate
bert-base 3 32 128 4e-5
bert-wwm-ext 3 32 128 5e-5
roberta-wwm-ext 3 32 128 4e-5
roberta-wwm-ext-large 3 32 40 4e-5
roberta-large 3 32 40 4e-5
albert-tiny 3 32 128 4e-5
albert-xxlarge 3 32 40 1e-5
PCL-MedBERT 3 32 128 4e-5

CHIP-CDN-num

Hyper-parameters for the training of pre-trained models with a sequence classifier for the prediction of the number of standard phrases corresponding to the original term in the CHIP-CDN task. We take the prediction results of the model as the number we choose from the most relevant standard phrases, combining with the prediction of the ranking model.

Model epoch batch_size max_length learning_rate
bert-base 20 32 128 4e-5
bert-wwm-ext 20 32 128 5e-5
roberta-wwm-ext 20 32 128 4e-5
roberta-wwm-ext-large 20 12 40 4e-5
roberta-large 20 12 40 4e-5
albert-tiny 20 32 128 4e-5
albert-xxlarge 20 12 40 1e-5
PCL-MedBERT 20 32 128 4e-5

CHIP-STS

Hyper-parameters for the training of pre-trained models with a sequence classifier for sentence similarity predication of the CHIP-STS task.

Model epoch batch_size max_length learning_rate
bert-base 3 16 40 3e-5
bert-wwm-ext 3 16 40 3e-5
roberta-wwm-ext 3 16 40 4e-5
roberta-wwm-ext-large 3 16 40 4e-5
roberta-large 3 16 40 2e-5
albert-tiny 3 16 40 5e-5
albert-xxlarge 3 16 40 1e-5
PCL-MedBERT 3 16 40 2e-5

KUAKE-QIC

Hyper-parameters for the training of pre-trained models with a sequence classifier for query intention prediction of the KUAKE-QIC task.

Model epoch batch_size max_length learning_rate
bert-base 3 16 50 2e-5
bert-wwm-ext 3 16 50 2e-5
roberta-wwm-ext 3 16 50 2e-5
roberta-wwm-ext-large 3 16 50 2e-5
roberta-large 3 16 50 3e-5
albert-tiny 3 16 50 5e-5
albert-xxlarge 3 16 50 1e-5
PCL-MedBERT 3 16 50 2e-5

KUAKE-QTR

Hyper-parameters for the training of pre-trained models with a sequence classifier for query-title pairs relevance prediction of the KUAKE-QTR task.

Model epoch batch_size max_length learning_rate
bert-base 3 16 40 4e-5
bert-wwm-ext 3 16 40 2e-5
roberta-wwm-ext 3 16 40 3e-5
roberta-wwm-ext-large 3 16 40 2e-5
roberta-large 3 16 40 2e-5
albert-tiny 3 16 40 5e-5
albert-xxlarge 3 16 40 1e-5
PCL-MedBERT 3 16 40 3e-5

KUAKE-QQR

Hyper-parameters for the training of pre-trained models with a sequence classifier for query-query pairs relevance prediction of the KUAKE-QQR task.

Model epoch batch_size max_length learning_rate
bert-base 3 16 30 3e-5
bert-wwm-ext 3 16 30 3e-5
roberta-wwm-ext 3 16 30 3e-5
roberta-wwm-ext-large 3 16 30 3e-5
roberta-large 3 16 30 2e-5
albert-tiny 3 16 30 5e-5
albert-xxlarge 3 16 30 3e-5
PCL-MedBERT 3 16 30 2e-5
Source code of the "Graph-Bert: Only Attention is Needed for Learning Graph Representations" paper

Graph-Bert Source code of "Graph-Bert: Only Attention is Needed for Learning Graph Representations". Please check the script.py as the entry point. We

14 Mar 25, 2022
A2T: Towards Improving Adversarial Training of NLP Models (EMNLP 2021 Findings)

A2T: Towards Improving Adversarial Training of NLP Models This is the source code for the EMNLP 2021 (Findings) paper "Towards Improving Adversarial T

QData 17 Oct 15, 2022
NLP - Machine learning

Flipkart-product-reviews NLP - Machine learning About Product reviews is an essential part of an online store like Flipkart’s branding and marketing.

Harshith VH 1 Oct 29, 2021
🤗 Transformers: State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Hugging Face 77.1k Dec 31, 2022
The NewSHead dataset is a multi-doc headline dataset used in NHNet for training a headline summarization model.

This repository contains the raw dataset used in NHNet [1] for the task of News Story Headline Generation. The code of data processing and training is available under Tensorflow Models - NHNet.

Google Research Datasets 31 Jul 15, 2022
Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Ubiquitous Knowledge Processing Lab 748 Jan 06, 2023
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

OpenBMB 377 Jan 02, 2023
SpikeX - SpaCy Pipes for Knowledge Extraction

SpikeX is a collection of pipes ready to be plugged in a spaCy pipeline. It aims to help in building knowledge extraction tools with almost-zero effort.

Erre Quadro Srl 384 Dec 12, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Jungil Kong 1.1k Jan 02, 2023
The official repository of the ISBI 2022 KNIGHT Challenge

KNIGHT The official repository holding the data for the ISBI 2022 KNIGHT Challenge About The KNIGHT Challenge asks teams to develop models to classify

Nicholas Heller 4 Jan 22, 2022
Simple Text-To-Speech Bot For Discord

Simple Text-To-Speech Bot For Discord This is a very simple TTS bot for discord made with python. For this bot you need FFMPEG, see installation to se

1 Sep 26, 2022
vits chinese, tts chinese, tts mandarin

vits chinese, tts chinese, tts mandarin 史上训练最简单,音质最好的语音合成系统

AmorTX 12 Dec 14, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 124 Jan 03, 2023
Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 models for speech recognition

Wav2Vec2 STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 mode

David Zurow 22 Dec 29, 2022
Client library to download and publish models and other files on the huggingface.co hub

huggingface_hub Client library to download and publish models and other files on the huggingface.co hub Do you have an open source ML library? We're l

Hugging Face 644 Jan 01, 2023
超轻量级bert的pytorch版本,大量中文注释,容易修改结构,持续更新

bert4pytorch 2021年8月27更新: 感谢大家的star,最近有小伙伴反映了一些小的bug,我也注意到了,奈何这个月工作上实在太忙,更新不及时,大约会在9月中旬集中更新一个只需要pip一下就完全可用的版本,然后会新添加一些关键注释。 再增加对抗训练的内容,更新一个完整的finetune

muqiu 317 Dec 18, 2022
NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking

pretrain4ir_tutorial NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking 用作NLPIR实验室, Pre-training

ZYMa 12 Apr 07, 2022
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.6k Dec 27, 2022
Text editor on python to convert english text to malayalam(Romanization/Transiteration).

Manglish Text Editor This is a simple transiteration (romanization ) program which is used to convert manglish to malayalam (converts njaan to ഞാൻ ).

Merin Rose Tom 1 May 11, 2022
A Persian Image Captioning model based on Vision Encoder Decoder Models of the transformers🤗.

Persian-Image-Captioning We fine-tuning the Vision Encoder Decoder Model for the task of image captioning on the coco-flickr-farsi dataset. The implem

Hamtech-ai 15 Aug 25, 2022