CCF BDCI 2020 房产行业聊天问答匹配赛道 A榜47/2985

Overview

CCF BDCI 2020 房产行业聊天问答匹配 A榜47/2985

赛题描述详见:https://www.datafountain.cn/competitions/474

文件说明

data: 存放训练数据和测试数据以及预处理代码

model_bert.py: 网络模型结构定义

adv_train.py: 对抗训练代码

run_bert_pse_adv.py: 运行bert-wwm + 对抗训练 + 伪标签模型

run_roberta_cls_pse_reinit_adv.py: 运行roberta-large last2embedding_cls + reinit + 对抗训练 + 伪标签模型

个人方案

我的baseline是将query和answer拼接后传入预训练好的bert进行特征提取,之后将提取的特征传入一个全连接层,最后接一个softmax进行分类。

其中尝试的预训练模型有bert(谷歌),bert_wwm(哈工大版本),roberta_large(哈工大版本),xlneternie等,其中效果较好的有bert-wwm和roberta-large。之后在baseline的基础上进行了各种尝试,主要尝试有以下:

模型 线上F1
bert-wwm 0.78
bert-wwm + 对抗训练 0.783
bert-wwm + 对抗训练 + 伪标签 0.7879
roberta-large 0.774
roberta-large + reinit + 对抗训练 0.786
roberta-large + reinit+对抗训练 + 伪标签 0.7871
roberta-large last2embedding_cls + reinit + 对抗训练 + 伪标签 0.7879

对抗训练

其基本的原理呢,就是通过添加扰动构造一些对抗样本,放给模型去训练,以攻为守,提高模型在遇到对抗样本时的鲁棒性,同时一定程度也能提高模型的表现和泛化能力。

参考链接:https://zhuanlan.zhihu.com/p/91269728

伪标签

将测试数据和预测结果进行拼接,之后当成训练数据传入到模型中重新进行训练。为了减少对训练数据的原始分布的影响并增加伪标签的置信度,我只在五个采用不同预训练模型的baseline预测一致的数据中采样了6000条测试数据加入到训练集进行训练。

重新初始化

参考链接:如何让Bert在finetune小数据集时更“稳”一点 https://zhuanlan.zhihu.com/p/148720604

大致思想是靠近底部的层(靠近input)学到的是比较通用的语义方面的信息,比如词性、词法等语言学知识,而靠近顶部的层会倾向于学习到接近下游任务的知识,对于预训练来说就是类似masked word prediction、next sentence prediction任务的相关知识。当使用bert预训练模型finetune其他下游任务(比如序列标注)时,如果下游任务与预训练任务差异较大,那么bert顶层的权重所拥有的知识反而会拖累整体的finetune进程,使得模型在finetune初期产生训练不稳定的问题。

因此,我们可以在finetune时,只保留接近底部的bert权重,对于靠近顶部的层的权重,可以重新随机初始化,从头开始学习。

在本次比赛中,我只对最后roberta-large的最后五层进行重新初始化。在实验中,我发现对于bert,重新初始化会降低效果,而roberta-large则有提升。

bert 不同embedding和cls组合

思路主要是参考 CCF BDCI 2019 互联网新闻情感分析 复赛top1解决方案

参考链接:https://github.com/cxy229/BDCI2019-SENTIMENT-CLASSIFICATION

即对bert不同embedding进行组合后传入全连接层进行分类。该方案尝试时间较晚,只实验last2embedding_cls这种组合,结果也确实有提升。

模型融合

对于单模,我采用五折交叉验证,对每一个单模的五个模型结果,我尝试了相加融合和投票的方式,结果是融合相加的线上f1较高

对于不同模型,我也只是采用的相加融合的方式(由于时间问题没有尝试投票和stacking的方式)。最后a榜效果最好的是bert-wwm + 对抗训练 + 伪标签、roberta-large + reinit+对抗训练 + 伪标签、roberta-large last2embedding_cls + reinit + 对抗训练 + 伪标签 三个模型的融合,线上F1有 0.7908 , 排名47;B榜我尝试只对两个效果最好的模型进行融合,即 bert-wwm + 对抗训练 + 伪标签last2embedding_cls + reinit + 对抗训练 + 伪标签,最终F1为0.80,排名72。

总结

本次参加比赛完全是数据挖掘课程要求,也是我第一次参加大数据比赛。因为我的研究方向是图像,所以基本可以说是从零开始,写这个github只是想记录一下这一个月自己从零开始的参赛经历,也希望对同样参加类似比赛的新人有帮助。最后,希望看到了顺手给star,万分感谢。

Owner
shuo
shuo
Contract Understanding Atticus Dataset

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
Tracking Progress in Natural Language Processing

Repository to track the progress in Natural Language Processing (NLP), including the datasets and the current state-of-the-art for the most common NLP tasks.

Sebastian Ruder 21.2k Dec 30, 2022
Transformers Wav2Vec2 + Parlance's CTCDecodeTransformers Wav2Vec2 + Parlance's CTCDecode

🤗 Transformers Wav2Vec2 + Parlance's CTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with Parlance's ctcdecode

Patrick von Platen 9 Jul 21, 2022
Open solution to the Toxic Comment Classification Challenge

Starter code: Kaggle Toxic Comment Classification Challenge More competitions 🎇 Check collection of public projects 🎁 , where you can find multiple

minerva.ml 153 Jun 22, 2022
CDLA: A Chinese document layout analysis (CDLA) dataset

CDLA: A Chinese document layout analysis (CDLA) dataset 介绍 CDLA是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label: 正文 标题 图片 图片标题 表格 表格标题 页眉 页脚 注释 公式 Text Title

buptlihang 84 Dec 28, 2022
Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API

gpt3-instruct-sandbox Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API Description This project updates an existing GPT-3 san

312 Jan 03, 2023
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
A BERT-based reverse dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end / back-end 임용

94 Dec 08, 2022
☀️ Measuring the accuracy of BBC weather forecasts in Honolulu, USA

Accuracy of BBC Weather forecasts for Honolulu This repository records the forecasts made by BBC Weather for the city of Honolulu, USA. Essentially, t

Max Halford 12 Oct 15, 2022
End-to-end image captioning with EfficientNet-b3 + LSTM with Attention

Image captioning End-to-end image captioning with EfficientNet-b3 + LSTM with Attention Model is seq2seq model. In the encoder pretrained EfficientNet

2 Feb 10, 2022
KoBERTopic은 BERTopic을 한국어 데이터에 적용할 수 있도록 토크나이저와 BERT를 수정한 코드입니다.

KoBERTopic 모델 소개 KoBERTopic은 BERTopic을 한국어 데이터에 적용할 수 있도록 토크나이저와 BERT를 수정했습니다. 기존 BERTopic : https://github.com/MaartenGr/BERTopic/tree/05a6790b21009d

Won Joon Yoo 26 Jan 03, 2023
Deduplication is the task to combine different representations of the same real world entity.

Deduplication is the task to combine different representations of the same real world entity. This package implements deduplication using active learning. Active learning allows for rapid training wi

63 Nov 17, 2022
Random Directed Acyclic Graph Generator

DAG_Generator Random Directed Acyclic Graph Generator verison1.0 简介 工作流通常由DAG(有向无环图)来定义,其中每个计算任务$T_i$由一个顶点(node,task,vertex)表示。同时,任务之间的每个数据或控制依赖性由一条加权

Livion 17 Dec 27, 2022
Code for producing Japanese GPT-2 provided by rinna Co., Ltd.

japanese-gpt2 This repository provides the code for training Japanese GPT-2 models. This code has been used for producing japanese-gpt2-medium release

rinna Co.,Ltd. 491 Jan 07, 2023
Easy-to-use CPM for Chinese text generation

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

382 Jan 07, 2023
Demo programs for the Talking Head Anime from a Single Image 2: More Expressive project.

Demo Code for "Talking Head Anime from a Single Image 2: More Expressive" This repository contains demo programs for the Talking Head Anime

Pramook Khungurn 901 Jan 06, 2023
NLP techniques such as named entity recognition, sentiment analysis, topic modeling, text classification with Python to predict sentiment and rating of drug from user reviews.

This file contains the following documents sumbited for Baruch CIS9665 group 9 fall 2021. 1. Dataset: drug_reviews.csv 2. python codes for text classi

Aarif Munwar Jahan 2 Jan 04, 2023
A Japanese tokenizer based on recurrent neural networks

Nagisa is a python module for Japanese word segmentation/POS-tagging. It is designed to be a simple and easy-to-use tool. This tool has the following

325 Jan 05, 2023
Smart discord chatbot integrated with Dialogflow

academic-NLP-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
RIDE automatically creates the package and boilerplate OOP Python node scripts as per your needs

RIDE: ROS IDE RIDE automatically creates the package and boilerplate OOP Python code for nodes as per your needs (RIDE is not an IDE, but even ROS isn

Jash Mota 20 Jul 14, 2022