뉴스 도메인 질의응답 시스템 (21-1학기 졸업 프로젝트)

Overview

뉴스 도메인 질의응답 시스템

본 프로젝트는 뉴스기사에 대한 질의응답 서비스 를 제공하기 위해서 진행한 프로젝트입니다. 약 3개월간 ( 21. 03 ~ 21. 05 ) 진행하였으며 Transformer 아키텍쳐 기반의 Encoder를 사용하여 한국어 질의응답 데이터셋으로 fine-tuning을 수행한 모델을 기반으로 최신 뉴스 기사를 기반으로 하여 질의응답 서비스를 제공합니다.


시스템 구성 요소

총 3가지 모듈로 구성되어 있으며 웹 클라이언트에서 질의를 입력받은 후 질문과 유사한 최신 뉴스 기사를 수집하고 이를 기반으로 기계독해를 수행하여 사용자에게 적절한 정답을 제시합니다.



웹 데모 페이지

General한 한국어 데이터셋을 기반으로 학습한 한국어 기계독해 모델에 뉴스 도메인에 적합한 추가적으로 학습한 모델을 서빙하여 실시간 질의응답 서비스를 제공한다

메인 검색 페이지

image

  • K 지정: 관련도 최상위 K개의 문서를 리턴
  • 질의 입력: 질문을 입력받음
  • 검색: 검색버튼을 누르면 로딩바 재생, 검색 -> 기계독해 수행

질의 결과

image

  • 기계독해 결과 출력: 정답이 있다고 판단한 문서에 대해서 결과출력
  • 확률값을 기준으로 소팅: 확률값이 가장 높은 결과를 맨 위에 보여줌

문서 상세 보기

image

  • 문맥 보기: 정답주변의 문맥을 볼 수 있음
  • 정답 하이라이팅: 정답을 보기 쉽게 하이라이팅함
  • 원본 뉴스기사 하이퍼링크: 기사 원문을 바로 찾아갈 수 있도록 제공

Requirements

For model serving

bentoml==0.12.1
torch==1.7.1
attrdict==2.0.1
fastprogress==1.0.0
numpy==1.19.2
transformers==4.1.1
scipy==1.5.4
scikit-learn==0.24.0
seqeval==1.2.2
sentencepiece==0.1.95
six==1.15.0

For web hosting

conda==4.9.2
Flask==1.1.2
html5lib @ file:///tmp/build/80754af9/html5lib_1593446221756/work
lxml @ file:///tmp/build/80754af9/lxml_1603216285000/work
MarkupSafe==1.1.1
requests @ file:///tmp/build/80754af9/requests_1592841827918/work
urllib3 @ file:///tmp/build/80754af9/urllib3_1603305693037/work

Model Serving with BentoML

두가지 MRC모델을 손쉽게 생성가능

  • make_single_mrc_model.py : Threshold-based MRC Model
  • make_dual_mrc_model.py : Retrospective Reader(IntensiveReadingModule, SketchReadingModule)

모델 생성

python make_dual_mrc_model.py

모델 배포

bentoml serve DualMRCModel:latest

데이터셋

  • Korquad2.0, AIHUB 기계독해 데이터셋(뉴스도메인 QAset) 사용
  • Korquad2.0은 HTML태그를 제거하고 문단단위로 전처리하여 Squad2.0형식으로 변환
  • Negative example을 포함하여 변환된 Korquad2.0 데이터 셋120만개와 AIHUB 기계독해 데이터셋 28만개를 학습시 사용
  • 약 7만개의 AIHUB 기계독해 데이터셋을 평가시 사용

모델 학습

  • 코쿼드 데이터를 3번, AIHUB 데이터를 7번 반복학습
  • 파라미터는 KoELECTRA-small-v3 모델의 configuration을 그대로 사용

모델 평가

General

  • 변환한 코쿼드의 데브셋 약 13만개를 평가 데이터로 사용
  • Soft/Hard 필터링 모델에 대한 평가 수행

Soft 필터링

  • Retrospective Reader 구조를 한국어 기계독해에 적용
  • SketchReading, IntensiveReading의 정보를 합산하여 정답을 검증
  • 가중치 변수는 추론 정보의 조합 비율을 말함
  • 아래와 같이 두 가지 모듈의 정보를 적절히 반영했을때 NoAnswer 분류 성능이 더 좋음을 알 수 있었음


Hard 필터링

  • 문단별 선별적으로 독해하는 상황을 가정함
  • SketchReading에서 정답이 없다고 판별한 경우 과감히 Skip
  • 추론 효율 향상과 정답이 없는 문단을 독해하여 발생할 수 있는 Negative bias를 줄이고자 함.
  • 하지만 필터링 비율에 따라서 성능저하 발생
  • 따라서, Positive example의 추론여부가 중요한 기계독해에선 Soft필터링 방식이 적절함을 보임 <<<<<<< HEAD

=======
![image](https://user-images.githubusercontent.com/48018483/120331699-03d07280-c329-11eb-9133-7f536130b688.png)

2317d0e137e1d25027ee78b55df4e5682a391295

Domain-Specific

  • AIHUB 기계독해 데이터셋 35만개의 일부를(20%) 평가 데이터로 사용
  • 단일 모델에 대한 평가만 수행
  • NoAnswer 분류시 사용하는 임계값을 변경하며 실험
Total
(EM)
Total
(F1)
정답이 있는 경우
(F1)
정답이 없는 경우
(acc)
KoreanNewsQAModel X X 81.84 X
KoreanNewsQAModel(th=10) 67.87 82.56 81.64 84.85
KoreanNewsQAModel(th=0) 70.58 84.92 80.53 95.89

전체적인 성능치를 고려하여 임계값을 0으로 설정하여 모델을 서빙하기로 결정

Citation

@misc{park2020koelectra,
  author = {Park, Jangwon},
  title = {KoELECTRA: Pretrained ELECTRA Model for Korean},
  year = {2020},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/monologg/KoELECTRA}}
}

Reference

Owner
TaegyeongEo
TaegyeongEo
ConvBERT-Prod

ConvBERT 目录 0. 仓库结构 1. 简介 2. 数据集和复现精度 3. 准备数据与环境 3.1 准备环境 3.2 准备数据 3.3 准备模型 4. 开始使用 4.1 模型训练 4.2 模型评估 4.3 模型预测 5. 模型推理部署 5.1 基于Inference的推理 5.2 基于Serv

yujun 7 Apr 08, 2022
Understanding the Difficulty of Training Transformers

Admin Understanding the Difficulty of Training Transformers Guided by our analyses, we propose Adaptive Model Initialization (Admin), which successful

Liyuan Liu 300 Dec 29, 2022
The proliferation of disinformation across social media has led the application of deep learning techniques to detect fake news.

Fake News Detection Overview The proliferation of disinformation across social media has led the application of deep learning techniques to detect fak

Kushal Shingote 1 Feb 08, 2022
Neural network models for joint POS tagging and dependency parsing (CoNLL 2017-2018)

Neural Network Models for Joint POS Tagging and Dependency Parsing Implementations of joint models for POS tagging and dependency parsing, as describe

Dat Quoc Nguyen 152 Sep 02, 2022
Repository for Project Insight: NLP as a Service

Project Insight NLP as a Service Contents Introduction Features Installation Setup and Documentation Project Details Demonstration Directory Details H

Abhishek Kumar Mishra 286 Dec 06, 2022
Code for Discovering Topics in Long-tailed Corpora with Causal Intervention.

Code for Discovering Topics in Long-tailed Corpora with Causal Intervention ACL2021 Findings Usage 0. Prepare environment Requirements: python==3.6 te

Xiaobao Wu 8 Dec 16, 2022
(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.

BERT Convolutions Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains expe

mlpc-ucsd 21 Jul 18, 2022
This project aims to conduct a text information retrieval and text mining on medical research publication regarding Covid19 - treatments and vaccinations.

Project: Text Analysis - This project aims to conduct a text information retrieval and text mining on medical research publication regarding Covid19 -

1 Mar 14, 2022
ACL'2021: Learning Dense Representations of Phrases at Scale

DensePhrases DensePhrases is an extractive phrase search tool based on your natural language inputs. From 5 million Wikipedia articles, it can search

Princeton Natural Language Processing 540 Dec 30, 2022
Extracting Summary Knowledge Graphs from Long Documents

GraphSum This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other basel

Zeqiu (Ellen) Wu 10 Oct 21, 2022
Sinkhorn Transformer - Practical implementation of Sparse Sinkhorn Attention

Sinkhorn Transformer This is a reproduction of the work outlined in Sparse Sinkhorn Attention, with additional enhancements. It includes a parameteriz

Phil Wang 217 Nov 25, 2022
Text Normalization(文本正则化)

Text Normalization(文本正则化) 任务描述:通过机器学习算法将英文文本的“手写”形式转换成“口语“形式,例如“6ft”转换成“six feet”等 实验结果 XGBoost + bag-of-words: 0.99159 XGBoost+Weights+rules:0.99002

Jason_Zhang 0 Feb 26, 2022
Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

Jan 2 Apr 20, 2022
GooAQ 🥑 : Google Answers to Google Questions!

This repository contains the code/data accompanying our recent work on long-form question answering.

AI2 112 Nov 06, 2022
Unofficial Python library for using the Polish Wordnet (plWordNet / Słowosieć)

Polish Wordnet Python library Simple, easy-to-use and reasonably fast library for using the Słowosieć (also known as PlWordNet) - a lexico-semantic da

Max Adamski 12 Dec 23, 2022
Prompt tuning toolkit for GPT-2 and GPT-Neo

mkultra mkultra is a prompt tuning toolkit for GPT-2 and GPT-Neo. Prompt tuning injects a string of 20-100 special tokens into the context in order to

61 Jan 01, 2023
The guide to tackle with the Text Summarization

The guide to tackle with the Text Summarization

Takahiro Kubo 1.2k Dec 30, 2022
A Chinese to English Neural Model Translation Project

ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C

Zhenbang Feng 29 Nov 26, 2022
Google AI 2018 BERT pytorch implementation

BERT-pytorch Pytorch implementation of Google AI's 2018 BERT, with simple annotation BERT 2018 BERT: Pre-training of Deep Bidirectional Transformers f

Junseong Kim 5.3k Jan 07, 2023
Faster, modernized fork of the language identification tool langid.py

py3langid py3langid is a fork of the standalone language identification tool langid.py by Marco Lui. Original license: BSD-2-Clause. Fork license: BSD

Adrien Barbaresi 12 Nov 05, 2022