A tool helps build a talk preview image by combining the given background image and talk event description

Overview

talk-preview-img-builder

A tool helps build a talk preview image by combining the given background image and talk event description

Installation and Usage

Install Dependencies

For running the app, you need to install the following dependencies by following command:

pipenv install -d

Run the Application

Before running the application, you need to prepare the material for building the talk preview images/slides. There are two materials that are required:

  • A background image named background.png which is located in the materials/img folder.

  • A talk event description named speeches.json which is located in the materials/ folder.

After preparing the material, you can run the application by following command:

pipenv run build_talk_preview_img   # build the talk preview images

or

pipenv run build_talk_preview_ppt  # build the talk preview slides

The generated talk preview images and slides are located in the export/ folder.

Configuring the Application

There are several options to configure the application, the default values are shown in the config.py file. You can override the default values by editing the config.py file or adding a .env file that setting theses variables before running the app.

Variable Description Default Value (Setting for Image/ Setting for Slides) Type (Setting for Image/ Setting for Slides)
BACKGROUND_IMG_PATH The path to the background image materials/img/background.png String
SPEECHES_PATH The path to the speech description materials/speeches.json String
PREVIEW_IMG_WIDTH The width of the generated preview image 700px / 30cm Integer / Float
PREVIEW_IMG_HEIGHT The height of the generated preview image 700px / 30cm Integer / Float
PREVIEW_IMG_TITLE_UPPER_LEFT_X The left position of the title in the upper left corner of the generated preview image 110px / 0.95cm Integer / Float
PREVIEW_IMG_TITLE_UPPER_LEFT_Y The top position of the title in the upper left corner of the generated preview image 110px / 1.04cm Integer / Float
PREVIEW_IMG_CONTENT_UPPER_LEFT_X The left position of the content in the upper left corner of the generated preview image 85px / 1.38cm Integer / Float
PREVIEW_IMG_CONTENT_UPPER_LEFT_Y The top position of the content in the upper left corner of the generated preview image 200px / 3.8cm Integer / Float
PREVIEW_IMG_FOOTER_UPPER_LEFT_X The left position of the footer in the upper left corner of the generated preview image 100px / 1.6cm Integer / Float
PREVIEW_IMG_FOOTER_UPPER_LEFT_Y The top position of the footer in the upper left corner of the generated preview image 650px / 12.2cm Integer / Float
PREVIEW_IMG_SPEAKER_UPPER_RIGHT_X The right position of the speaker name in the upper right corner of the generated preview image 600px / 13.5cm Integer / Float
PREVIEW_IMG_SPEAKER_UPPER_RIGHT_Y The top position of the speaker name in the upper right corner of the generated preview image 570px / 10cm Integer / Float
TITLE_HEIGHT The height of the title 70px / 1.84cm Integer / Float
CONTENT_HEIGHT The height of the content 90px / 7.5cm Integer / Float
PREVIEW_TEXT_COLOR The color of text used in the preview image #080A42 String
PREVIEW_HIGHTLIGHT_TEXT_COLOR The highlight color of text used in the preview image #EBCC73 String
PREVIEW_TEXT_FONT The font used in the preview image "PingFang.ttc"/"Taipei Sans TC Beta" String
PREVIEW_TEXT_BOLD_FONT The bold font used in the preview image "PingFang.ttc"/"Taipei Sans TC Beta" String

Coding Style

The coding style of the application is PEP8. You can use the following command to check the coding style:

pipenv run lint

and the following command to reformat the coding style which is leveraged by black and isort:

pipenv run reformat

TODO

  • Automatically generate the talk preview metadata file (e.g. speeches.json) from the PyConTW API server.
  • Implement hybrid language support text wrapping in title and content of the talk preview image.
  • Implement dynamic font size adjustment in the title and content of the talk preview image depending on the length of words.
  • Implement CI workflow by using GitHub Actions
Owner
PyCon Taiwan
PyCon Taiwan
Sample data associated with the Aurora-BP study

The Aurora-BP Study and Dataset This repository contains sample code, sample data, and explanatory information for working with the Aurora-BP dataset

Microsoft 16 Dec 12, 2022
APEACH: Attacking Pejorative Expressions with Analysis on Crowd-generated Hate Speech Evaluation Datasets

APEACH - Korean Hate Speech Evaluation Datasets APEACH is the first crowd-generated Korean evaluation dataset for hate speech detection. Sentences of

Kevin-Yang 70 Dec 06, 2022
Implementation of some unbalanced loss like focal_loss, dice_loss, DSC Loss, GHM Loss et.al

Implementation of some unbalanced loss for NLP task like focal_loss, dice_loss, DSC Loss, GHM Loss et.al Summary Here is a loss implementation reposit

121 Jan 01, 2023
Sequence model architectures from scratch in PyTorch

This repository implements a variety of sequence model architectures from scratch in PyTorch. Effort has been put to make the code well structured so that it can serve as learning material. The train

Brando Koch 11 Mar 28, 2022
The SVO-Probes Dataset for Verb Understanding

The SVO-Probes Dataset for Verb Understanding This repository contains the SVO-Probes benchmark designed to probe for Subject, Verb, and Object unders

DeepMind 20 Nov 30, 2022
A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to achieve the ultimate TTS.

A Non-Autoregressive Transformer based TTS, supporting a family of SOTA transformers with supervised and unsupervised duration modelings. This project grows with the research community, aiming to ach

Keon Lee 237 Jan 02, 2023
Unlimited Call - Text Bombing Tool

FastBomber Unlimited Call - Text Bombing Tool Installation On Termux

Aryan 6 Nov 10, 2022
基于Transformer的单模型、多尺度的VAE模型

UniVAE 基于Transformer的单模型、多尺度的VAE模型 介绍 https://kexue.fm/archives/8475 依赖 需要大于0.10.6版本的bert4keras(当前还没有推到pypi上,可以直接从GitHub上clone最新版)。 引用 @misc{univae,

苏剑林(Jianlin Su) 49 Aug 24, 2022
Share constant definitions between programming languages and make your constants constant again

Introduction Reconstant lets you share constant and enum definitions between programming languages. Constants are defined in a yaml file and converted

Natan Yellin 47 Sep 10, 2022
XLNet: Generalized Autoregressive Pretraining for Language Understanding

Introduction XLNet is a new unsupervised language representation learning method based on a novel generalized permutation language modeling objective.

Zihang Dai 6k Jan 07, 2023
ADCS - Automatic Defect Classification System (ADCS) for SSMC

Table of Contents Table of Contents ADCS Overview Summary Operator's Guide Demo System Design System Logic Training Mode Production System Flow Folder

Tam Zher Min 2 Jun 24, 2022
The code for the Subformer, from the EMNLP 2021 Findings paper: "Subformer: Exploring Weight Sharing for Parameter Efficiency in Generative Transformers", by Machel Reid, Edison Marrese-Taylor, and Yutaka Matsuo

Subformer This repository contains the code for the Subformer. To help overcome this we propose the Subformer, allowing us to retain performance while

Machel Reid 10 Dec 27, 2022
Transformation spoken text to written text

Transformation spoken text to written text This model is used for formatting raw asr text output from spoken text to written text (Eg. date, number, i

Nguyen Binh 16 Dec 28, 2022
A Chinese to English Neural Model Translation Project

ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C

Zhenbang Feng 29 Nov 26, 2022
Ongoing research training transformer language models at scale, including: BERT & GPT-2

What is this fork of Megatron-LM and Megatron-DeepSpeed This is a detached fork of https://github.com/microsoft/Megatron-DeepSpeed, which in itself is

BigScience Workshop 316 Jan 03, 2023
Phrase-Based & Neural Unsupervised Machine Translation

Unsupervised Machine Translation This repository contains the original implementation of the unsupervised PBSMT and NMT models presented in Phrase-Bas

Facebook Research 1.5k Dec 28, 2022
Quantifiers and Negations in RE Documents

Quantifiers-and-Negations-in-RE-Documents This project was part of my work for a

Nicolas Ruscher 1 Feb 01, 2022
EMNLP 2021 paper "Pre-train or Annotate? Domain Adaptation with a Constrained Budget".

Pre-train or Annotate? Domain Adaptation with a Constrained Budget This repo contains code and data associated with EMNLP 2021 paper "Pre-train or Ann

Fan Bai 8 Dec 17, 2021
Based on 125GB of data leaked from Twitch, you can see their monthly revenues from 2019-2021

Twitch Revenues Bu script'i kullanarak istediğiniz yayıncıların, Twitch'den sızdırılan 125 GB'lik veriye dayanarak, 2019-2021 arası aylık gelirlerini

4 Nov 11, 2021
Code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

This repository contains the code for the paper in Findings of EMNLP 2021: "EfficientBERT: Progressively Searching Multilayer Perceptron via Warm-up Knowledge Distillation".

Chenhe Dong 28 Nov 10, 2022