A tool helps build a talk preview image by combining the given background image and talk event description

Overview

talk-preview-img-builder

A tool helps build a talk preview image by combining the given background image and talk event description

Installation and Usage

Install Dependencies

For running the app, you need to install the following dependencies by following command:

pipenv install -d

Run the Application

Before running the application, you need to prepare the material for building the talk preview images/slides. There are two materials that are required:

  • A background image named background.png which is located in the materials/img folder.

  • A talk event description named speeches.json which is located in the materials/ folder.

After preparing the material, you can run the application by following command:

pipenv run build_talk_preview_img   # build the talk preview images

or

pipenv run build_talk_preview_ppt  # build the talk preview slides

The generated talk preview images and slides are located in the export/ folder.

Configuring the Application

There are several options to configure the application, the default values are shown in the config.py file. You can override the default values by editing the config.py file or adding a .env file that setting theses variables before running the app.

Variable Description Default Value (Setting for Image/ Setting for Slides) Type (Setting for Image/ Setting for Slides)
BACKGROUND_IMG_PATH The path to the background image materials/img/background.png String
SPEECHES_PATH The path to the speech description materials/speeches.json String
PREVIEW_IMG_WIDTH The width of the generated preview image 700px / 30cm Integer / Float
PREVIEW_IMG_HEIGHT The height of the generated preview image 700px / 30cm Integer / Float
PREVIEW_IMG_TITLE_UPPER_LEFT_X The left position of the title in the upper left corner of the generated preview image 110px / 0.95cm Integer / Float
PREVIEW_IMG_TITLE_UPPER_LEFT_Y The top position of the title in the upper left corner of the generated preview image 110px / 1.04cm Integer / Float
PREVIEW_IMG_CONTENT_UPPER_LEFT_X The left position of the content in the upper left corner of the generated preview image 85px / 1.38cm Integer / Float
PREVIEW_IMG_CONTENT_UPPER_LEFT_Y The top position of the content in the upper left corner of the generated preview image 200px / 3.8cm Integer / Float
PREVIEW_IMG_FOOTER_UPPER_LEFT_X The left position of the footer in the upper left corner of the generated preview image 100px / 1.6cm Integer / Float
PREVIEW_IMG_FOOTER_UPPER_LEFT_Y The top position of the footer in the upper left corner of the generated preview image 650px / 12.2cm Integer / Float
PREVIEW_IMG_SPEAKER_UPPER_RIGHT_X The right position of the speaker name in the upper right corner of the generated preview image 600px / 13.5cm Integer / Float
PREVIEW_IMG_SPEAKER_UPPER_RIGHT_Y The top position of the speaker name in the upper right corner of the generated preview image 570px / 10cm Integer / Float
TITLE_HEIGHT The height of the title 70px / 1.84cm Integer / Float
CONTENT_HEIGHT The height of the content 90px / 7.5cm Integer / Float
PREVIEW_TEXT_COLOR The color of text used in the preview image #080A42 String
PREVIEW_HIGHTLIGHT_TEXT_COLOR The highlight color of text used in the preview image #EBCC73 String
PREVIEW_TEXT_FONT The font used in the preview image "PingFang.ttc"/"Taipei Sans TC Beta" String
PREVIEW_TEXT_BOLD_FONT The bold font used in the preview image "PingFang.ttc"/"Taipei Sans TC Beta" String

Coding Style

The coding style of the application is PEP8. You can use the following command to check the coding style:

pipenv run lint

and the following command to reformat the coding style which is leveraged by black and isort:

pipenv run reformat

TODO

  • Automatically generate the talk preview metadata file (e.g. speeches.json) from the PyConTW API server.
  • Implement hybrid language support text wrapping in title and content of the talk preview image.
  • Implement dynamic font size adjustment in the title and content of the talk preview image depending on the length of words.
  • Implement CI workflow by using GitHub Actions
Owner
PyCon Taiwan
PyCon Taiwan
CoSENT、STS、SentenceBERT

CoSENT_Pytorch 比Sentence-BERT更有效的句向量方案

102 Dec 07, 2022
WikiPron - a command-line tool and Python API for mining multilingual pronunciation data from Wiktionary

WikiPron WikiPron is a command-line tool and Python API for mining multilingual pronunciation data from Wiktionary, as well as a database of pronuncia

213 Jan 01, 2023
GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training

GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training Code and model from our AAAI 2021 paper

Amazon Web Services - Labs 83 Jan 09, 2023
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 159 Apr 04, 2022
Rhasspy 673 Dec 28, 2022
DELTA is a deep learning based natural language and speech processing platform.

DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p

DELTA 1.5k Dec 26, 2022
This program do translate english words to portuguese

Python-Dictionary This program is used to translate english words to portuguese. Web-Scraping This program use BeautifulSoap to make web scraping, so

João Assalim 1 Oct 10, 2022
Source code and dataset for ACL 2019 paper "ERNIE: Enhanced Language Representation with Informative Entities"

ERNIE Source code and dataset for "ERNIE: Enhanced Language Representation with Informative Entities" Reqirements: Pytorch=0.4.1 Python3 tqdm boto3 r

THUNLP 1.3k Dec 30, 2022
SGMC: Spectral Graph Matrix Completion

SGMC: Spectral Graph Matrix Completion Code for AAAI21 paper "Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning". Data Format

Chao Chen 8 Dec 12, 2022
Dual languaged (rus+eng) tool for packing and unpacking archives of Silky Engine.

SilkyArcTool English Dual languaged (rus+eng) GUI tool for packing and unpacking archives of Silky Engine. It is not the same arc as used in Ai6WIN. I

Tester 5 Sep 15, 2022
Athena is an open-source implementation of end-to-end speech processing engine.

Athena is an open-source implementation of end-to-end speech processing engine. Our vision is to empower both industrial application and academic research on end-to-end models for speech processing.

Ke Technologies 34 Sep 08, 2022
IMDB film review sentiment classification based on BERT's supervised learning model.

IMDB film review sentiment classification based on BERT's supervised learning model. On the other hand, the model can be extended to other natural language multi-classification tasks.

Paris 1 Apr 17, 2022
Pre-training BERT masked language models with custom vocabulary

Pre-training BERT Masked Language Models (MLM) This repository contains the method to pre-train a BERT model using custom vocabulary. It was used to p

Stella Douka 14 Nov 02, 2022
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Dec 28, 2022
Coreference resolution for English, French, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, Explosion AI 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 French 1.2.3 German 1.2

Explosion 70 Dec 12, 2022
Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time.

Wordle_Bot Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time. It will log onto the wordle website and en

Lucas Polidori 15 Dec 11, 2022
Ceaser-Cipher - The Caesar Cipher technique is one of the earliest and simplest method of encryption technique

Ceaser-Cipher The Caesar Cipher technique is one of the earliest and simplest me

Lateefah Ajadi 2 May 12, 2022
Russian GPT3 models.

Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Larg

Sberbank AI 1.6k Jan 05, 2023
A Flask Sentiment Analysis API, with visual implementation

The Sentiment Analysis Api was created using python flask module,it allows users to parse a text or sentence throught the (?text) arguement, then view the sentiment analysis of that sentence. It can

Ifechukwudeni Oweh 10 Jul 17, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

9 Jan 08, 2023