fastai ulmfit - Pretraining the Language Model, Fine-Tuning and training a Classifier

Overview

fast.ai ULMFiT with SentencePiece from pretraining to deployment

Motivation: Why even bother with a non-BERT / Transformer language model? Short answer: you can train a state of the art text classifier with ULMFiT with limited data and affordable hardware. The whole process (preparing the Wikipedia dump, pretrain the language model, fine tune the language model and training the classifier) takes about 5 hours on my workstation with a RTX 3090. The training of the model with FP16 requires less than 8 GB VRAM - so you can train the model on affordable GPUs.

I also saw this paper on the roadmap for fast.ai 2.3 Single Headed Attention RNN: Stop Thinking With Your Head which could improve the performance further.

This Repo is based on:

Pretrained models

Language (local) code Perplexity Vocab Size Tokenizer Download (.tgz files)
German Deutsch de 16.1 15k SP https://bit.ly/ulmfit-dewiki
German Deutsch de 18.5 30k SP https://bit.ly/ulmfit-dewiki-30k
Dutch Nederlands nl 20.5 15k SP https://bit.ly/ulmfit-nlwiki
Russian Русский ru 29.8 15k SP https://bit.ly/ulmfit-ruwiki
Portuguese Português pt 17.3 15k SP https://bit.ly/ulmfit-ptwiki
Vietnamese Tiếng Việt vi 18.8 15k SP https://bit.ly/ulmfit-viwiki
Japanese 日本語 ja 42.6 15k SP https://bit.ly/ulmfit-jawiki
Italian Italiano it 23.7 15k SP https://bit.ly/ulmfit-itwiki
Spanish Español es 21.9 15k SP https://bit.ly/ulmfit-eswiki
Korean 한국어 ko 39.6 15k SP https://bit.ly/ulmfit-kowiki
Thai ไทย th 56.4 15k SP https://bit.ly/ulmfit-thwiki
Hebrew עברית he 46.3 15k SP https://bit.ly/ulmfit-hewiki
Arabic العربية ar 50.0 15k SP https://bit.ly/ulmfit-arwiki
Mongolian Монгол mn see: Github: RobertRitz

Download with wget

# to preserve the filenames (.tgz!) when downloading with wget use --content-disposition
wget --content-disposition https://bit.ly/ulmfit-dewiki 

Usage of pretrained models - library fastai_ulmfit.pretrained

I've written a small library around this repo, to easily use the pretrained models. You don't have to bother with model, vocab and tokenizer files and paths - the following functions will take care of that.

Tutorial: fastai_ulmfit_pretrained_usage.ipynb Open In Colab

Installation

pip install fastai-ulmfit

Usage

# import
from fastai_ulmfit.pretrained import *

url = 'http://bit.ly/ulmfit-dewiki'

# get tokenizer - if pretrained=True, the SentencePiece Model used for language model pretraining will be used. Default: False 
tok = tokenizer_from_pretrained(url, pretrained=False)

# get language model learner for fine-tuning
learn = language_model_from_pretrained(dls, url=url, drop_mult=0.5).to_fp16()

# save fine-tuned model for classification
path = learn.save_lm('tmp/test_lm')

# get text classifier learner from fine-tuned model
learn = text_classifier_from_lm(dls, path=path, metrics=[accuracy]).to_fp16()

Extract Sentence Embeddings

from fastai_ulmfit.embeddings import SentenceEmbeddingCallback

se = SentenceEmbeddingCallback(pool_mode='concat')
_ = learn.get_preds(cbs=[se])

feat = se.feat
pca = PCA(n_components=2)
pca.fit(feat['vec'])
coords = pca.transform(feat['vec'])

Model pretraining

Setup

Python environment

fastai-2.2.7
fastcore-1.3.19
sentencepiece-0.1.95
fastinference-0.0.36

Install packages pip install -r requirements.txt

The trained language models are compatible with other fastai versions!

Docker

The Wikipedia-dump preprocessing requires docker https://docs.docker.com/get-docker/.

Project structure

.
├── we                         Docker image for the preperation of the Wikipedia-dump / wikiextractor
└── data          
    └── {language-code}wiki         
        ├── dump                    downloaded Wikipedia dump
        │   └── extract             extracted wikipedia-articles using wikiextractor
        ├── docs 
        │   ├── all                 all extracted Wikipedia articles as single txt-files
        │   ├── sampled             sampled Wikipedia articles for language model pretraining
        │   └── sampled_tok         cached tokenized sampled articles - created by fastai / sentencepiece
        └── model 
            ├── lm                  language model trained in step 2
            │   ├── fwd             forward model
            │   ├── bwd             backwards model
            │   └── spm             SentencePiece model
            │
            ├── ft                  fine tuned model trained in step 3
            │   ├── fwd             forward model
            │   ├── bwd             backwards model
            │   └── spm             SentencePiece model
            │
            └── class               classifier trained in step 4
                ├── fwd             forward learner
                └── bwd             backwards learner

1. Prepare Wikipedia-dump for pretraining

ULMFiT can be peretrained on relativly small datasets - 100 million tokens are sufficient to get state-of-the art classification results (compared to Transformer models as BERT, which need huge amounts of training data). The easiest way is to pretrain a language model on Wikipedia.

The code for the preperation steps is heavily inspired by / copied from the fast.ai NLP-course: https://github.com/fastai/course-nlp/blob/master/nlputils.py

I built a docker container and script, that automates the following steps:

  1. Download Wikipedia XML-dump
  2. Extract the text from the dump
  3. Sample 160.000 documents with a minimum length of 1800 characters (results in 100m-120m tokens) both parameters can be changed - see the usage below

The whole process will take some time depending on the download speed and your hardware. For the 'dewiki' the preperation took about 45 min.

Run the following commands in the current directory

# build the wikiextractor docker file
docker build -t wikiextractor ./we

# run the docker container for a specific language
# docker run -v $(pwd)/data:/data -it wikiextractor -l <language-code> 
# for German language-code de run:
docker run -v $(pwd)/data:/data -it wikiextractor -l de
...
sucessfully prepared dewiki - /data/dewiki/docs/sampled, number of docs 160000/160000 with 110699119 words / tokens!

# To change the number of sampled documents or the minimum length see
usage: preprocess.py [-h] -l LANG [-n NUMBER_DOCS] [-m MIN_DOC_LENGTH] [--mirror MIRROR] [--cleanup]

# To cleanup indermediate files (wikiextractor and all splitted documents) run the following command. 
# The Wikipedia-XML-Dump and the sampled docs will not be deleted!
docker run -v $(pwd)/data:/data -it wikiextractor -l <language-code> --cleanup

2. Language model pretraining on Wikipedia Dump

Notebook: 2_ulmfit_lm_pretraining.ipynb

To get the best result, you can train two seperate language models - a forward and a backward model. You'll have to run the complete notebook twice and set the backwards parameter accordingly. The models will be saved in seperate folders (fwd / bwd). The same applies to fine-tuning and training of the classifier.

Parameters

Change the following parameters according to your needs:

lang = 'de' # language of the Wikipedia-Dump
backwards = False # Train backwards model? Default: False for forward model
bs=128 # batch size
vocab_sz = 15000 # vocab size - 15k / 30k work fine with sentence piece
num_workers=18 # num_workers for the dataloaders
step = 'lm' # language model - don't change

Training Logs + config

model.json contains the parameters the language model was trained with and the statistics (looses and metrics) of the last epoch

{
    "lang": "de",
    "step": "lm",
    "backwards": false,
    "batch_size": 128,
    "vocab_size": 15000,
    "lr": 0.01,
    "num_epochs": 10,
    "drop_mult": 0.5,
    "stats": {
        "train_loss": 2.894167184829712,
        "valid_loss": 2.7784812450408936,
        "accuracy": 0.46221256256103516,
        "perplexity": 16.094558715820312
    }
}

history.csv log of the training metrics (epochs, losses, accuracy, perplexity)

epoch,train_loss,valid_loss,accuracy,perplexity,time
0,3.375441551208496,3.369227886199951,0.3934227228164673,29.05608367919922,23:00
...
9,2.894167184829712,2.7784812450408936,0.46221256256103516,16.094558715820312,22:44

3. Language model fine-tuning on unlabled data

Notebook: 3_ulmfit_lm_finetuning.ipynb

To improve the performance on the downstream-task, the language model should be fine-tuned. We are using a Twitter dataset (GermEval2018/2019), so we fine-tune the LM on unlabled tweets.

To use the notebook on your own dataset, create a .csv-file containing your (unlabled) data in the text column.

Files required from the Language Model (previous step):

  • Model (*model.pth)
  • Vocab (*vocab.pkl)

I am not reusing the SentencePiece-Model from the language model! This could lead to slightly different tokenization but fast.ai (-> language_model_learner()) and the fine-tuning takes care of adding and training unknown tokens! This approch gave slightly better results than reusing the SP-Model from the language model.

4. Train the classifier

Notebook: 4_ulmfit_train_classifier.ipynb

The (fine-tuned) language model now can be used to train a classifier on a (small) labled dataset.

To use the notebook on your own dataset, create a .csv-file containing your texts in the text and labels in the label column.

Files required from the fine-tuned LM (previous step):

  • Encoder (*encoder.pth)
  • Vocab (*vocab.pkl)
  • SentencePiece-Model (spm/spm.model)

5. Use the classifier for predictions / inference on new data

Notebook: 5_ulmfit_inference.ipynb

Evaluation

German pretrained model

Results with an ensemble of forward + backward model (see the inference notebook). Neither the fine-tuning of the LM, nor the training of the classifier was optimized - so there is still room for improvement.

Official results: https://ids-pub.bsz-bw.de/frontdoor/deliver/index/docId/9319/file/Struss_etal._Overview_of_GermEval_task_2_2019.pdf

Task 1 Coarse Classification

Classes: OTHER, OFFENSE

Accuracy: 79,68 F1: 75,96 (best BERT 76,95)

Task 2 Fine Classification

Classes: OTHER, PROFANITY, INSULT, ABUSE

Accuracy: 74,56 % F1: 52,54 (best BERT 53.59)

Dutch model

Compared result with: https://arxiv.org/pdf/1912.09582.pdf
Dataset https://github.com/benjaminvdb/DBRD

Accuracy 93,97 % (best BERT 93,0 %)

Japanese model

Copared results with:

Livedoor news corpus
Accuracy 97,1% (best BERT ~98 %)

Korean model

Compared with: https://github.com/namdori61/BERT-Korean-Classification Dataset: https://github.com/e9t/nsmc Accuracy 89,6 % (best BERT 90,1 %)

Deployment as REST-API

see https://github.com/floleuerer/fastai-docker-deploy

.

BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese

Table of contents Introduction Using BARTpho with fairseq Using BARTpho with transformers Notes BARTpho: Pre-trained Sequence-to-Sequence Models for V

VinAI Research 58 Dec 23, 2022
Multilingual Emotion classification using BERT (fine-tuning). Published at the WASSA workshop (ACL2022).

XLM-EMO: Multilingual Emotion Prediction in Social Media Text Abstract Detecting emotion in text allows social and computational scientists to study h

MilaNLP 35 Sep 17, 2022
FastFormers - highly efficient transformer models for NLU

FastFormers FastFormers provides a set of recipes and methods to achieve highly efficient inference of Transformer models for Natural Language Underst

Microsoft 678 Jan 05, 2023
Simple program that translates the name of files into English

Simple program that translates the name of files into English. Useful for when editing/inspecting programs that were developed in a foreign language.

0 Dec 22, 2021
Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

2 Jan 20, 2022
Spam filtering made easy for you

spammy Author: Tasdik Rahman Latest version: 1.0.3 Contents 1 Overview 2 Features 3 Example 3.1 Accuracy of the classifier 4 Installation 4.1 Upgradin

Tasdik Rahman 137 Dec 18, 2022
Persian-lexicon - A lexicon of 70K unique Persian (Farsi) words

Persian Lexicon This repo uses Uppsala Persian Corpus (UPC) to construct a lexic

Saman Vaisipour 7 Apr 01, 2022
LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language

LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language ⚖️ The library of Natural Language Processing for Brazilian legal lang

Felipe Maia Polo 125 Dec 20, 2022
Ecommerce product title recognition package

revizor This package solves task of splitting product title string into components, like type, brand, model and article (or SKU or product code or you

Bureaucratic Labs 16 Mar 03, 2022
Code for the paper PermuteFormer

PermuteFormer This repo includes codes for the paper PermuteFormer: Efficient Relative Position Encoding for Long Sequences. Directory long_range_aren

Peng Chen 42 Mar 16, 2022
This repository has a implementations of data augmentation for NLP for Japanese.

daaja This repository has a implementations of data augmentation for NLP for Japanese: EDA: Easy Data Augmentation Techniques for Boosting Performance

Koga Kobayashi 60 Nov 11, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
An assignment on creating a minimalist neural network toolkit for CS11-747

minnn by Graham Neubig, Zhisong Zhang, and Divyansh Kaushik This is an exercise in developing a minimalist neural network toolkit for NLP, part of Car

Graham Neubig 63 Dec 29, 2022
Super easy library for BERT based NLP models

Fast-Bert New - Learning Rate Finder for Text Classification Training (borrowed with thanks from https://github.com/davidtvs/pytorch-lr-finder) Suppor

Utterworks 1.8k Dec 27, 2022
A library for Multilingual Unsupervised or Supervised word Embeddings

MUSE: Multilingual Unsupervised and Supervised Embeddings MUSE is a Python library for multilingual word embeddings, whose goal is to provide the comm

Facebook Research 3k Jan 06, 2023
PyTorch Implementation of the paper Single Image Texture Translation for Data Augmentation

SITT The repo contains official PyTorch Implementation of the paper Single Image Texture Translation for Data Augmentation. Authors: Boyi Li Yin Cui T

Boyi Li 52 Jan 05, 2023
Python implementation of TextRank for phrase extraction and summarization of text documents

PyTextRank PyTextRank is a Python implementation of TextRank as a spaCy pipeline extension, used to: extract the top-ranked phrases from text document

derwen.ai 1.9k Jan 06, 2023
Yet Another Compiler Visualizer

yacv: Yet Another Compiler Visualizer yacv is a tool for visualizing various aspects of typical LL(1) and LR parsers. Check out demo on YouTube to see

Ashutosh Sathe 129 Dec 17, 2022
Uncomplete archive of files from the European Nopsled Team

European Nopsled CTF Archive This is an archive of collected material from various Capture the Flag competitions that the European Nopsled team played

European Nopsled 4 Nov 24, 2021