LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

Overview

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

Installation

See INSTALL.md for details on installing the codebase, including requirement and environment settings

Data

For data preparation and setup, our LSTC strictly follows the processing of PySlowFast, See DATASET.md for details on preparing the data.

Run the code

We take SlowFast-ResNet50 as an example

  • train the model
python3 tools/run_net.py --cfg config/AVA/SLOWFAST_32x12_R50_LFB.yaml \
    AVA.FEATURE_BANK_PATH 'path/to/feature/bank/folder' \
    TRAIN.CHECKPOINT_FILE_PATH 'path/to/pretrained/backbone' \
    OUTPUT_DIR 'path/to/output/folder'
  • test the model
python3 tools/run_net.py --cfg config/AVA/SLOWFAST_32x12_R50_LFB.yaml \
    AVA.FEATURE_BANK_PATH 'path/to/feature/bank/folder' \
    OUTPUT_DIR 'path/to/output/folder' \
    TRAIN.ENABLE False \ 
    TEST.ENABLE True

If you want to start the DDP training from command line with torch.distributed.launch, please set start_method='cmd' in tools/run_net.py

Resource

The codebase provide following resources for fast training and validation

Pretrained backbone on Kinetics

backbone dataset model type link
ResNet50 Kinetics400 Caffe2 Google Drive/Baidu Disk (Code: y1wl)
ResNet101 Kinetics600 Caffe2 Google Drive/Baidu Disk (Code: slde)

Extracted long term feature bank

backbone feature bank (LMDB) dimension
ResNet50 Google Drive 1280
ResNet101 Google Drive 2304

Checkpoint file

backbone checkpoint model type
ResNet50 Google Drive/Baidu Disk (Code: fi0s) pytorch
ResNet101 Google Drive/Baidu Disk (Code: g63o) pytorch

Acknowledgement

This codebase is built upon PySlowFast.

Citation

If you find this repository helps your research, please refer following paper

@InProceedings{Yuxi_2021_ACM,
  author = {Li, Yuxi and Zhang, Boshen and Li, Jian and Wang, Yabiao and Wang, Chengjie and Li, Jilin and Huang, Feiyue and Lin, Weiyao},
  title = {LSTC: Boosting Atomic Action Detection with Long-Short-Term Context},
  booktitle = {ACM Conference on Multimedia},
  month = {October},
  year = {2021}
} 
Owner
Tencent YouTu Research
Tencent YouTu Research
Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks. It takes raw videos/images + text as inputs, and outputs task predictions. ClipB

Jie Lei 雷杰 612 Jan 04, 2023
LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation

LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation Tasks | Datasets | LongLM | Baselines | Paper Introduction LOT is a ben

46 Dec 28, 2022
中文生成式预训练模型

T5 PEGASUS 中文生成式预训练模型,以mT5为基础架构和初始权重,通过类似PEGASUS的方式进行预训练。 详情可见:https://kexue.fm/archives/8209 Tokenizer 我们将T5 PEGASUS的Tokenizer换成了BERT的Tokenizer,它对中文更

410 Jan 03, 2023
Persian-lexicon - A lexicon of 70K unique Persian (Farsi) words

Persian Lexicon This repo uses Uppsala Persian Corpus (UPC) to construct a lexic

Saman Vaisipour 7 Apr 01, 2022
An ActivityWatch watcher to pose questions to the user and record her answers.

aw-watcher-ask An ActivityWatch watcher to pose questions to the user and record her answers. This watcher uses Zenity to present dialog boxes to the

Bernardo Chrispim Baron 33 Dec 03, 2022
Utilities for preprocessing text for deep learning with Keras

Note: This utility is really old and is no longer maintained. You should use keras.layers.TextVectorization instead of this. Utilities for pre-process

Hamel Husain 180 Dec 09, 2022
Text classification on IMDB dataset using Keras and Bi-LSTM network

Text classification on IMDB dataset using Keras and Bi-LSTM Text classification on IMDB dataset using Keras and Bi-LSTM network. Usage python3 main.py

Hamza Rashid 2 Sep 27, 2022
The code for the Subformer, from the EMNLP 2021 Findings paper: "Subformer: Exploring Weight Sharing for Parameter Efficiency in Generative Transformers", by Machel Reid, Edison Marrese-Taylor, and Yutaka Matsuo

Subformer This repository contains the code for the Subformer. To help overcome this we propose the Subformer, allowing us to retain performance while

Machel Reid 10 Dec 27, 2022
Entity Disambiguation as text extraction (ACL 2022)

ExtEnD: Extractive Entity Disambiguation This repository contains the code of ExtEnD: Extractive Entity Disambiguation, a novel approach to Entity Dis

Sapienza NLP group 121 Jan 03, 2023
A minimal Conformer ASR implementation adapted from ESPnet.

Conformer ASR A minimal Conformer ASR implementation adapted from ESPnet. Introduction I want to use the pre-trained English ASR model provided by ESP

Niu Zhe 3 Jan 24, 2022
TTS is a library for advanced Text-to-Speech generation.

TTS is a library for advanced Text-to-Speech generation. It's built on the latest research, was designed to achieve the best trade-off among ease-of-training, speed and quality. TTS comes with pretra

Mozilla 6.5k Jan 08, 2023
Spacy-ginza-ner-webapi - Named Entity Recognition API with spaCy and GiNZA

Named Entity Recognition API with spaCy and GiNZA I wrote a blog post about this

Yuki Okuda 3 Feb 27, 2022
Problem: Given a nepali news find the category of the news

Classification of category of nepali news catorgory using different algorithms Problem: Multiclass Classification Approaches: TFIDF for vectorization

pudasainishushant 2 Jan 09, 2022
nlpcommon is a python Open Source Toolkit for text classification.

nlpcommon nlpcommon, Python Text Tool. Guide Feature Install Usage Dataset Contact Cite Reference Feature nlpcommon is a python Open Source

xuming 3 May 29, 2022
Graph Coloring - Weighted Vertex Coloring Problem

Graph Coloring - Weighted Vertex Coloring Problem This project proposes several local searches and an MCTS algorithm for the weighted vertex coloring

Cyril 1 Jul 08, 2022
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
aMLP Transformer Model for Japanese

aMLP-japanese Japanese aMLP Pretrained Model aMLPとは、Liu, Daiらが提案する、Transformerモデルです。 ざっくりというと、BERTの代わりに使えて、より性能の良いモデルです。 詳しい解説は、こちらの記事などを参考にしてください。 この

tanreinama 13 Aug 11, 2022
[ICLR 2021 Spotlight] Pytorch implementation for "Long-tailed Recognition by Routing Diverse Distribution-Aware Experts."

RIDE: Long-tailed Recognition by Routing Diverse Distribution-Aware Experts. by Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu and Stella X. Yu at UC

Xudong (Frank) Wang 205 Dec 16, 2022
💥 Fast State-of-the-Art Tokenizers optimized for Research and Production

Provides an implementation of today's most used tokenizers, with a focus on performance and versatility. Main features: Train new vocabularies and tok

Hugging Face 6.2k Dec 31, 2022
Applied Natural Language Processing in the Enterprise - An O'Reilly Media Publication

Applied Natural Language Processing in the Enterprise This is the companion repo for Applied Natural Language Processing in the Enterprise, an O'Reill

Applied Natural Language Processing in the Enterprise 95 Jan 05, 2023