Applied Natural Language Processing in the Enterprise - An O'Reilly Media Publication

Overview

Applied Natural Language Processing in the Enterprise

This is the companion repo for Applied Natural Language Processing in the Enterprise, an O'Reilly Media publication by Ankur A. Patel and Ajay Uppili Arasanipalai. Here, you will find all the source code from the book, published here on GitHub for your convenience.

Follow the steps below to get started with setting up your environment and running the code examples.

Setup

To install all the required libraries and dependencies, run the following command:

pip install nlpbook

However, the recommended approach is to use conda, a cross-platform, language-agnostic package manager that automatically handles dependency conflicts.

If you have not already, install the Miniforge distribution of Python 3.8 based on your OS. If you are on Windows, you can choose the Anaconda distribution of Python 3.8 instead of the Miniforge distribution, if you wish to.

Once conda is installed, run the following command:

conda install -c nlpbook nlpbook

Alternatively, if you'd like to keep your environment for this book isolated from the rest of your system (which we highly recommend), run the following commands:

conda create -n nlpbook
conda activate nlpbook
conda install -c nlpbook nlpbook

Then run conda activate nlpbook every time you want to return to your environment. To exit the environment, run conda deactivate.

Next, install the spaCy models.

python -m spacy download en_core_web_sm
python -m spacy download en_core_web_lg
python -m spacy download en_core_web_trf

Setup Environment Directly

If you're interested in setting up an environment to quickly get up and running with the code for this book, run the following commands from the root of this repo (please see the "Getting the Code" section below on how to set up the repo first).

conda env create --file environment.yml
conda activate nlpbook

You can also grab all the dependacies via pip:

pip install -r requirements.txt

Getting the Code

All publicly released code is in this repository. The simplest way to get started is via Git:

git clone https://github.com/nlpbook/nlpbook.git

If you're on Windows or another platform that doesn't already have git installed, you may need to obtain a Git client.

If you want a specific version to match the copy of the book you have (this can occasionally change), you can find previous versions on the releases page.

Getting the Data

Next, download data from AWS S3 (the data files are too large to store and access on Github).

aws s3 cp s3://applied-nlp-book/data/ data --recursive --no-sign-request
aws s3 cp s3://applied-nlp-book/models/ag_dataset/ models/ag_dataset --recursive --no-sign-request

How This Repo is Organized

Each chapter in the book has a corresponding notebook in the root of this project repository. They are named chXX.ipynb for the chapter XX. The appendices are named apXX.ipynb.

Note: This repo only contains the code for the chapters, not the actual text in the book. For the complete text, please purchase a copy of the book. Chapters 1, 2, and 3 have been open-sourced, courtesy of O'Reilly and the authors.

Once you'd navigated to the nlpbook project directory, you can lauch a Jupyter client such as Jupyter Lab, Jupyter Notebooks, or VS Code to view and run the notebooks.

Contributions and Errata

We welcome any suggestions, feedback, and errata from readers. If you notice anything that seems off in the book or could use improvement, we've love to hear from you. Feel free to submit an issue here on GitHub or on our errata page.

Copyright Notice

This material is made available by the Creative Commons Attribution-Noncommercial-No Derivatives 4.0 International Public License.

Note: You are free to use the code in accordance with the MIT license, but you are not allowed to redistribute or sell any of the text presented in chapters 1, 2, and 3, which have been open-sourced for the benefit of the community. Please consider purchasing a copy of the book if you are interested in reading the text that accompanies the code presented in this repo.

You might also like...
💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.

State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 🤗 Transformers provides thousands of pretrained models to perform tasks o

A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. IMPORTANT: (30.08.2020) We moved our models

State of the Art Natural Language Processing

Spark NLP: State of the Art Natural Language Processing Spark NLP is a Natural Language Processing library built on top of Apache Spark ML. It provide

Basic Utilities for PyTorch Natural Language Processing (NLP)

Basic Utilities for PyTorch Natural Language Processing (NLP) PyTorch-NLP, or torchnlp for short, is a library of basic utilities for PyTorch NLP. tor

A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Toolkit for Machine Learning, Natural Language Processing, and Text Generation, in TensorFlow.  This is part of the CASL project: http://casl-project.ai/
Toolkit for Machine Learning, Natural Language Processing, and Text Generation, in TensorFlow. This is part of the CASL project: http://casl-project.ai/

Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides

DELTA is a deep learning based natural language and speech processing platform.
DELTA is a deep learning based natural language and speech processing platform.

DELTA - A DEep learning Language Technology plAtform What is DELTA? DELTA is a deep learning based end-to-end natural language and speech processing p

💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

Comments
  • Download failed for train_prepared.csv

    Download failed for train_prepared.csv

    download failed: s3://applied-nlp-book/data/ag_dataset/prepared/train_prepared.csv to data/train_prepared.csv An error occurred (AccessDenied) when calling the GetObject operation: Access Denied

    opened by sharma-ji 2
  • Chapter 05: data contains no attribute

    Chapter 05: data contains no attribute "Field"

    In chapter 05 when setting up the fields for training an Embedding on IMDB data you propose:

    TEXT = data.Field(lower=True, include_lengths=True, \
    batch_first=False, tokenize='spacy')
    LABEL = data.LabelField()
    

    However, data has not been defined yet. The module data imported from torchtext.__all__ does not contain an attribute Field. In the sources of torchtext I couldn't find it either.

    Can you advise or define data ?

    My Python version: 1.9.0 My Torchtext version: 0.10.0

    opened by iNLyze 1
  • No 'data' folder in Ch. 1

    No 'data' folder in Ch. 1

    Hello,

    I purchased your book and started reading Ch.1. Great book so far. I tried to emulate what is written in your book and ipynb. But there is no folder "data" that can retrieve Jeopardy questions. I guess this kind of incompleteness will not be the last even though I am reading your first chapter. Could you run your notebooks in a new environment and check what is missing? Thank you in advance. It would be an option to make your notebooks run in Colab. Then, you can write a setup file at the beginning of each chapter and users won't have issues running the scripts.

    opened by knslee07 1
Releases(v1.0.0)
  • v1.0.0(May 29, 2021)

    This is the initial public release of the source code for "Applied Natural Language Processing in the Enterprise" by Ankur A. Patel and Ajay Uppili Arasanipalai.

    Source code(tar.gz)
    Source code(zip)
Owner
Applied Natural Language Processing in the Enterprise
An O'Reilly Media book by Ankur A. Patel and Ajay Uppili Arasanipalai
Applied Natural Language Processing in the Enterprise
Source code for CsiNet and CRNet using Fully Connected Layer-Shared feedback architecture.

FCS-applications Source code for CsiNet and CRNet using the Fully Connected Layer-Shared feedback architecture. Introduction This repository contains

Boyuan Zhang 4 Oct 07, 2022
A Word Level Transformer layer based on PyTorch and 🤗 Transformers.

Transformer Embedder A Word Level Transformer layer based on PyTorch and 🤗 Transformers. How to use Install the library from PyPI: pip install transf

Riccardo Orlando 27 Nov 20, 2022
A tool helps build a talk preview image by combining the given background image and talk event description

talk-preview-img-builder A tool helps build a talk preview image by combining the given background image and talk event description Installation and U

PyCon Taiwan 4 Aug 20, 2022
Bpe algorithm can finetune tokenizer - Bpe algorithm can finetune tokenizer

"# bpe_algorithm_can_finetune_tokenizer" this is an implyment for https://github

张博 1 Feb 02, 2022
Yet another Python binding for fastText

pyfasttext Warning! pyfasttext is no longer maintained: use the official Python binding from the fastText repository: https://github.com/facebookresea

Vincent Rasneur 230 Nov 16, 2022
A Fast Command Analyser based on Dict and Pydantic

Alconna Alconna 隶属于ArcletProject, 在Cesloi内有内置 Alconna 是 Cesloi-CommandAnalysis 的高级版,支持解析消息链 一般情况下请当作简易的消息链解析器/命令解析器 文档 暂时的文档 Example from arclet.alcon

19 Jan 03, 2023
An easy to use Natural Language Processing library and framework for predicting, training, fine-tuning, and serving up state-of-the-art NLP models.

Welcome to AdaptNLP A high level framework and library for running, training, and deploying state-of-the-art Natural Language Processing (NLP) models

Novetta 407 Jan 03, 2023
A flask application to predict the speech emotion of any .wav file.

This is a speech emotion recognition app. It will allow you to train a modular MLP model with the RAVDESS dataset, and then use that model with a flask application to predict the speech emotion of an

Aryan Vijaywargia 2 Dec 15, 2021
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
Under the hood working of transformers, fine-tuning GPT-3 models, DeBERTa, vision models, and the start of Metaverse, using a variety of NLP platforms: Hugging Face, OpenAI API, Trax, and AllenNLP

Transformers-for-NLP-2nd-Edition @copyright 2022, Packt Publishing, Denis Rothman Contact me for any question you have on LinkedIn Get the book on Ama

Denis Rothman 150 Dec 23, 2022
A 10000+ hours dataset for Chinese speech recognition

A 10000+ hours dataset for Chinese speech recognition

309 Dec 16, 2022
A method for cleaning and classifying text using transformers.

NLP Translation and Classification The repository contains a method for classifying and cleaning text using NLP transformers. Overview The input data

Ray Chamidullin 0 Nov 15, 2022
A telegram bot to translate 100+ Languages

🔥 GOOGLE TRANSLATER 🔥 The owner would not be responsible for any kind of bans due to the bot. • ⚡ INSTALLING ⚡ • • 🔰 Deploy To Railway 🔰 • • ✅ OFF

Aɴᴋɪᴛ Kᴜᴍᴀʀ 5 Dec 20, 2021
Anuvada: Interpretable Models for NLP using PyTorch

Anuvada: Interpretable Models for NLP using PyTorch So, you want to know why your classifier arrived at a particular decision or why your flashy new d

EDGE 102 Oct 01, 2022
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Jan 03, 2023
Autoregressive Entity Retrieval

The GENRE (Generative ENtity REtrieval) system as presented in Autoregressive Entity Retrieval implemented in pytorch. @inproceedings{decao2020autoreg

Meta Research 611 Dec 16, 2022
Python powered crossword generator with database with 20k+ polish words

crossword_generator Generate simple crossword puzzle from words and definitions fetched from krzyżowki.edu.pl endpoints -/ string:word - returns js

0 Jan 04, 2022
Modular and extensible speech recognition library leveraging pytorch-lightning and hydra.

Lightning ASR Modular and extensible speech recognition library leveraging pytorch-lightning and hydra What is Lightning ASR • Installation • Get Star

Soohwan Kim 40 Sep 19, 2022
Code for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned Language Models in the wild .

🌳 Fingerprinting Fine-tuned Language Models in the wild This is the code and dataset for our ACL 2021 (Findings) Paper - Fingerprinting Fine-tuned La

LCS2-IIITDelhi 5 Sep 13, 2022
VMD Audio/Text control with natural language

This repository is a proof of principle for performing Molecular Dynamics analysis, in this case with the program VMD, via natural language commands.

Andrew White 13 Jun 09, 2022