Few-shot Natural Language Generation for Task-Oriented Dialog

Related tags

Text Data & NLPSC-GPT
Overview

Few-shot Natural Language Generation for Task-Oriented Dialog

This repository contains the dataset, source code and trained model for the following paper:

Few-shot Natural Language Generation for Task-Oriented Dialog Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun Li, Jinchao Li, Michael Zeng and Jianfeng Gao

ArXiv paper: https://arxiv.org/abs/2002.12328

This repository is based on hugginface transformer package and OpenAI GPT-2, containing model training code and pretrained medium model checkpoint. Some evaluation scripts are adapted from RNNLG. The results indicate that with minimal training examples, SC-GPT is able to generate natural language response given dialog acts naturally and adequately. It can be used to train an NLG model in new domains with very limited examples.

The include scripts can be used to reproduce the results reported in the paper.

Project and demo webpage: https://aka.ms/scgpt

Dataset: FewShotWoz

FewShotWoz is constructed using dataset from RNNLG and MultiWoz.

Data files includes

{domain}/train.json: training set in json format used for evaluation, other package like RNNLG also need this format. {domain}/train.txt: linearized training set for GPT-2 models. {domain}/test.json: testing set in json format. {domain}/test.txt: linearized testing set for GPT-2 models.

Data format

[
"inform(name='hakka restaurant';pricerange=moderate)", 
"hakka restaurant is moderate -ly priced", 
"hakka restaurant is moderate -ly priced" 
]

First item: dialog act
Second item: corresponding natural language description
Thrid item: repeated for evaluation script

Linearized as:
inform ( name = hakka restaurant ; pricerange = moderate ) & hakka restaurant is moderate -ly priced

Pipeline

The code is still under cleanup. More details of code usage will be added soon

Setup

Please use the below command to clone and install the requirements.

git clone https://github.com/pengbaolin/SC-GPT.git
cd SC-GPT
pip install -r requirements.txt

Fetch and unzip the checkpoint

wget https://bapengstorage.blob.core.windows.net/fileshare/scgpt.tar.gz
tar -xvf scgpt.tar.gz

Training

export CUDA_VISIBLE_DEVICES=0
python train.py --output_dir=MODEL_SAVE_PATH --model_type=gpt2 --model_name_or_path=PRE_TRINED_MODEL_PATH --do_train --do_eval --eval_data_file=data/restaurant/train.txt --per_gpu_train_batch_size 1 --num_train_epochs EPOCH --learning_rate LR --overwrite_cache --use_tokenize --train_data_file=data/restaurant/train.txt --overwrite_output_dir

MODEL_SAVE_PATH : Path of the saving model .

PRE_TRAINED_MODEL_PATH : Initial checkpoint; Could start from gpt2, gpt2-meidum or our provided scgpt folder.

EPOCH : Number of training epochs; 5 is enough for a reasonable performance

LR : Learning rate; 5e-5, 1e-5, or 1e-4

Decoding

export CUDA_VISIBLE_DEVICES=0
python generate.py --model_type=gpt2 --model_name_or_path=MODEL_SAVE_PATH --num_samples 5 --input_file=data/restaurant/test.txt --top_k 5 --output_file=results.json --length 80

Evaluate

python evaluator.py --domain restaurant results.json

script for attraction/train/taxi will be provided soon

Interact

python interact.py --model_type=gpt2 --model_name_or_path=MODEL_SAVE_PATH --length 50 --num_samples 5

Try our demo

The live demo is at https://aka.ms/scgpt. Please refer the examples on top to input dialog acts.

Disclaimer

This repository aims to facilitate research in large-scale pretraining for NLG in the context of dialog systems. This toolkit contains only part of the modeling machinery needed to actually produce a model weight file in a running dialog. On its own, this model provides only information about the weights of various text spans; in order for a researcher to actually use it, they will need to bring conversational data of their own and decode the response generation from the pretrained system. Microsoft is not responsible for any generation from the 3rd party utilization of the pretrained system.

Citation

if you use this code and data in your research, please cite our arxiv paper:

@misc{peng2020scgpt,
      title={Few-shot Natural Language Generation for Task-Oriented Dialog},
      author={Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun Li, Jinchao Li, Michael Zeng, Jianfeng Gao},
      archivePrefix={arXiv},
      year={2020},
      eprint={2002.12328},
      primaryClass={cs.CL}
}
Chinese Grammatical Error Diagnosis

nlp-CGED Chinese Grammatical Error Diagnosis 中文语法纠错研究 基于序列标注的方法 所需环境 Python==3.6 tensorflow==1.14.0 keras==2.3.1 bert4keras==0.10.6 笔者使用了开源的bert4keras

12 Nov 25, 2022
precise iris segmentation

PI-DECODER Introduction PI-DECODER, a decoder structure designed for Precise Iris Segmentation and Location. The decoder structure is shown below: Ple

8 Aug 08, 2022
2021海华AI挑战赛·中文阅读理解·技术组·第三名

文字是人类用以记录和表达的最基本工具,也是信息传播的重要媒介。透过文字与符号,我们可以追寻人类文明的起源,可以传播知识与经验,读懂文字是认识与了解的第一步。对于人工智能而言,它的核心问题之一就是认知,而认知的核心则是语义理解。

21 Dec 26, 2022
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
PRAnCER is a web platform that enables the rapid annotation of medical terms within clinical notes.

PRAnCER (Platform enabling Rapid Annotation for Clinical Entity Recognition) is a web platform that enables the rapid annotation of medical terms within clinical notes. A user can highlight spans of

Sontag Lab 39 Nov 14, 2022
中文空间语义理解评测

中文空间语义理解评测 最新消息 2021-04-10 🚩 排行榜发布: Leaderboard 2021-04-05 基线系统发布: SpaCE2021-Baseline 2021-04-05 开放数据提交: 提交结果 2021-04-01 开放报名: 我要报名 2021-04-01 数据集 pa

40 Jan 04, 2023
Search Git commits in natural language

NaLCoS - NAtural Language COmmit Search Search commit messages in your repository in natural language. NaLCoS (NAtural Language COmmit Search) is a co

Pushkar Patel 50 Mar 22, 2022
A demo for end-to-end English and Chinese text spotting using ABCNet.

ABCNet_Chinese A demo for end-to-end English and Chinese text spotting using ABCNet. This is an old model that was trained a long ago, which serves as

Yuliang Liu 45 Oct 04, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

13.2k Jul 07, 2021
🧪 Cutting-edge experimental spaCy components and features

spacy-experimental: Cutting-edge experimental spaCy components and features This package includes experimental components and features for spaCy v3.x,

Explosion 65 Dec 30, 2022
Anomaly Detection 이상치 탐지 전처리 모듈

Anomaly Detection 시계열 데이터에 대한 이상치 탐지 1. Kernel Density Estimation을 활용한 이상치 탐지 train_data_path와 test_data_path에 존재하는 시점 정보를 포함하고 있는 csv 형태의 train data와

CLUST-consortium 43 Nov 28, 2022
A desktop GUI providing an audio interface for GPT3.

Jabberwocky neil_degrasse_tyson_with_audio.mp4 Project Description This GUI provides an audio interface to GPT-3. My main goal was to provide a conven

16 Nov 27, 2022
TLA - Twitter Linguistic Analysis

TLA - Twitter Linguistic Analysis Tool for linguistic analysis of communities TLA is built using PyTorch, Transformers and several other State-of-the-

Tushar Sarkar 47 Aug 14, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

中文开放信息抽取系统, open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

7 Nov 02, 2022
Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET

Training COMET using seq2seq setting Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET. The codes are modified from run_summarizati

tqfang 9 Dec 17, 2022
In this project, we compared Spanish BERT and Multilingual BERT in the Sentiment Analysis task.

Applying BERT Fine Tuning to Sentiment Classification on Amazon Reviews Abstract Sentiment analysis has made great progress in recent years, due to th

Alexander Leonardo Lique Lamas 5 Jan 03, 2022
p-tuning for few-shot NLU task

p-tuning_NLU Overview 这个小项目是受乐于分享的苏剑林大佬这篇p-tuning 文章启发,也实现了个使用P-tuning进行NLU分类的任务, 思路是一样的,prompt实现方式有不同,这里是将[unused*]的embeddings参数抽取出用于初始化prompt_embed后

3 Dec 29, 2022
Problem: Given a nepali news find the category of the news

Classification of category of nepali news catorgory using different algorithms Problem: Multiclass Classification Approaches: TFIDF for vectorization

pudasainishushant 2 Jan 09, 2022
NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

Artefact 114 Dec 15, 2022