New Modeling The Background CodeBase

Related tags

Text Data & NLPMiBv2
Overview

Modeling the Background for Incremental Learning in Semantic Segmentation

This is the updated official PyTorch implementation of our work: "Modeling the Background for Incremental Learning in Semantic Segmentation" accepted at CVPR 2020. For the original implementation, please refer to MiB In the update, we provide:

  • Support for WandB
  • Removed Nvidia DDP/AMP for PyTorch ones
  • Clear and better logging
  • Fixed MiB parameters in the argparser

We still want to provide users implementations of:

Requirements

To install the requirements, use the requirements.txt file:

pip install -r /path/to/requirements.txt

How to download data

In this project we use two dataset, ADE20K and Pascal-VOC 2012. We provide the scripts to download them in data/download_\ .sh . The script takes no inputs but use it in the target directory (where you want to download data).

ImageNet Pretrained Models

After setting the dataset, you download the models pretrained on ImageNet using InPlaceABN. Download the ResNet-101 model (we only need it but you can also download other networks if you want to change it). Then, put the pretrained model in the pretrained folder.

How to perform training

The most important file is run.py, that is in charge to start the training or test procedure. To run it, simpy use the following command:

python -m torch.distributed.launch --nproc_per_node=
   
     run.py --data_root 
    
      --name 
     
       .. other args ..

     
    
   

The default is to use a pretraining for the backbone used, that is searched in the pretrained folder of the project. We used the pretrained model released by the authors of In-place ABN (as said in the paper), that can be found here: link. Since the pretrained are made on multiple-gpus, they contain a prefix "module." in each key of the network. Please, be sure to remove them to be compatible with this code (simply rename them using key = key[7:]). If you don't want to use pretrained, please use --no-pretrained.

There are many options (you can see them all by using --help option), but we arranged the code to being straightforward to test the reported methods. Leaving all the default parameters, you can replicate the experiments by setting the following options.

  • please specify the data folder using: --data_root
  • dataset: --dataset voc (Pascal-VOC 2012) | ade (ADE20K)
  • task: --task , where tasks are
    • 15-5, 15-5s, 19-1 (VOC), 100-50, 100-10, 50, 100-50b, 100-10b, 50b (ADE, b indicates the order)
  • step (each step is run separately): --step , where N is the step number, starting from 0
  • (only for Pascal-VOC) disjoint is default setup, to enable overlapped: --overlapped
  • learning rate: --lr 0.01 (for step 0) | 0.001 (for step > 0)
  • batch size: --batch_size <24/num_GPUs>
  • epochs: --epochs 30 (Pascal-VOC 2012) | 60 (ADE20K)
  • method: --method , where names are
    • FT, LWF, LWF-MC, ILT, EWC, RW, PI, MIB

For all details please follow the information provided using the help option.

Example commands

LwF on the 100-50 setting of ADE20K, step 0: python -m torch.distributed.launch --nproc_per_node=2 run.py --data_root data --batch_size 12 --dataset ade --name LWF --task 100-50 --step 0 --lr 0.01 --epochs 60 --method LWF

MIB on the 50b setting of ADE20K, step 2: python -m torch.distributed.launch --nproc_per_node=2 run.py --data_root data --batch_size 12 --dataset ade --name MIB --task 100-50 --step 2 --lr 0.001 --epochs 60 --method MIB

LWF-MC on 15-5 disjoint setting of VOC, step 1: python -m torch.distributed.launch --nproc_per_node=2 run.py --data_root data --batch_size 12 --dataset voc --name LWF-MC --task 15-5 --step 1 --lr 0.001 --epochs 30 --method LWF-MC

RW on 15-1 overlapped setting of VOC, step 1: python -m torch.distributed.launch --nproc_per_node=2 run.py --data_root data --batch_size 12 --dataset voc --name LWF-MC --task 15-5s --overlapped --step 1 --lr 0.001 --epochs 30 --method RW

Once you trained the model, you can see the result on tensorboard (we perform the test after the whole training) or you can test it by using the same script and parameters but using the command --test that will skip all the training procedure and test the model on test data.

Cite us

Please, cite the following article when referring to this code/method.

@inProceedings{cermelli2020modeling,
   author = {Cermelli, Fabio and Mancini, Massimiliano and Rota Bul\`o, Samuel and Ricci, Elisa and Caputo, Barbara},
   title  = {Modeling the Background for Incremental Learning in Semantic Segmentation},
   booktitle = {Computer Vision and Pattern Recognition (CVPR)},
   year      = {2020},
   month     = {June}
}
Owner
Fabio Cermelli
My research interest in AI includes Computer vision and Reinforcement learning.
Fabio Cermelli
A simple chatbot based on chatterbot that you can use for anything has basic features

Chatbotium A simple chatbot based on chatterbot that you can use for anything has basic features. I have some errors Read the paragraph below: Known b

Herman 1 Feb 16, 2022
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

Max Woolf 4.8k Dec 30, 2022
Easy-to-use CPM for Chinese text generation

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

382 Jan 07, 2023
LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search

LightSpeech UnOfficial PyTorch implementation of LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search.

Rishikesh (ऋषिकेश) 54 Dec 03, 2022
Official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

This repository is the official Pytorch implementation of Test-Agnostic Long-Tailed Recognition by Test-Time Aggregating Diverse Experts with Self-Supervision.

vanint 101 Dec 30, 2022
A CSRankings-like index for speech researchers

Speech Rankings This project mimics CSRankings to generate an ordered list of researchers in speech/spoken language processing along with their possib

Mutian He 19 Nov 26, 2022
[AAAI 21] Curriculum Labeling: Revisiting Pseudo-Labeling for Semi-Supervised Learning

◥ Curriculum Labeling ◣ Revisiting Pseudo-Labeling for Semi-Supervised Learning Paola Cascante-Bonilla, Fuwen Tan, Yanjun Qi, Vicente Ordonez. In the

UVA Computer Vision 113 Dec 15, 2022
Built for cleaning purposes in military institutions

Ferramenta do AL Construído para fins de limpeza em instituições militares. Instalação Requer python = 3.2 pip install -r requirements.txt Usagem Exe

0 Aug 13, 2022
ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset.

ProteinBERT is a universal protein language model pretrained on ~106M proteins from the UniRef90 dataset. Through its Python API, the pretrained model can be fine-tuned on any protein-related task in

241 Jan 04, 2023
Smart discord chatbot integrated with Dialogflow

academic-NLP-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
Python library for processing Chinese text

SnowNLP: Simplified Chinese Text Processing SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob

Rui Wang 6k Jan 02, 2023
Rich Prosody Diversity Modelling with Phone-level Mixture Density Network

Phone Level Mixture Density Network for TTS This repo contains pytorch implementation of paper Rich Prosody Diversity Modelling with Phone-level Mixtu

Rishikesh (ऋषिकेश) 42 Dec 13, 2022
A collection of models for image - text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Approximately Correct Machine Intelligence (ACMI) Lab 21 Nov 24, 2022
Neural building blocks for speaker diarization: speech activity detection, speaker change detection, overlapped speech detection, speaker embedding

⚠️ Checkout develop branch to see what is coming in pyannote.audio 2.0: a much smaller and cleaner codebase Python-first API (the good old pyannote-au

pyannote 2.2k Jan 09, 2023
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Hiroki Nakayama 1.5k Dec 05, 2022
In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset.

Med-VQA In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset. Two of these are made on top of Facebook AI Reasearch's Multi-Mo

Kshitij Ambilduke 8 Apr 14, 2022
100+ Chinese Word Vectors 上百种预训练中文词向量

Chinese Word Vectors 中文词向量 中文 This project provides 100+ Chinese Word Vectors (embeddings) trained with different representations (dense and sparse),

embedding 10.4k Jan 09, 2023
Code examples for my Write Better Python Code series on YouTube.

Write Better Python Code This repository contains the code examples used in my Write Better Python Code series published on YouTube: https:/

858 Dec 29, 2022