In this repository, I have developed an end to end Automatic speech recognition project. I have developed the neural network model for automatic speech recognition with PyTorch and used MLflow to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry.

Overview

End to End Automatic Speech Recognition

architecture

In this repository, I have developed an end to end Automatic speech recognition project. I have developed the neural network model for automatic speech recognition with PyTorch and used MLflow to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry. The Neural Acoustic model is built with reference to the DeepSpeech2 model, but not the exact DeepSpeach2 model or the DeepSpeech model as mentioned in their respective research papers.

Technologies used:

  1. MLflow.mlflow
    • to manage the ML lifecycle.
    • to track and compare model performance in the ml lifecyle.
    • experimentation, reproducibility, deployment, and a central model registry.
  2. Pytorch.pytorch
    • The Acoustic Neural Network is implemented with pytorch.
    • torchaudio for feature extraction and data pre-processing.

Speech Recognition Pipeline

architecture1

Dataset

In this project, the LibriSpeech dataset has been used to train and validate the model. It has audio data for input and text speech for the respective audio to be predicted by our model. Also, I have used a subset of 2000 files from the training and test set of the LibriSpeech dataset for faster training and validation over limited GPU power and usage limit.

Pre-Processing

In this process Torchaudio has been used to extract the waveform and sampling rate from the audiofile. Then have been used MFCC(Mel-frequency cepstrum coefficients) for feature extraction from the waveform. MelSpectogram, Spectogram and Frequency Masking could also be used in this case for feature exxtraction.

Acoustic Model architecture.

The Neural Network architecture consist of Residul-CNN blocks, BidirectionalGRU blocks, and fully connected Linear layers for final classification. From the input layer, we have two Residual CNN blocks(in sequential) with batch normalization, followed by a fully connected layer, hence connecting it to three bi-directional GRU blocks(in sequential) and finally fully connected linear layers for classification.

CTC(Connectionist Temporal Classification) Loss as the base loss function for our model and AdamW as the optimizer.

Decoding

We have used Greedy Decoder which argmax's the output of the Neural Network and transforms it into text through character mapping.

ML Lifecycle Pipeline

architecture2
We start by initializing the mlflow server where we need to specify backend storage, artifact uri, host and the port. Then we create an experiment, start a run within the experiment which inturn tracks the training and validation loss. Then we save the model followed by registring it and further use the registered model for deployment over the production.

Implementation

First we need to initialize the mlflow server.

mlflow run -e server . 

To start the server in a non-conda environmnet

mlflow run -e server . --no-conda

the server could also be initialized directly from the terminal by the following command. But for this the tracking uri need to be set manually.

mlflow server \
--backend-store-uri sqlite:///mlflow.db \
--default-artifact-root ./mlruns \
--host 127.0.0.1

Then we need to start the model training.

mlflow run -e train --experiment-name "SpeechRecognition" . -P epoch=20 -P batch=32

To train in non-conda environment.

mlflow run -e train --experiment-name "SpeechRecognition" . -P epoch=20 -P batch=32 --no-conda

To train the model through python command.

python main.py --epoch=20 --batch=20

This command functions the same as the above mlflow commands. It's just that I was facing some issues or bugs while running with mlflow command which worked prefectly fine while running with the python command.

Trained model performance

trainloss
testloss
lr
wer
cer
Now its time to validate the registered model. Enter the registered model name with respective model stage and version and file_id of the LibriSpeech dataset Test file.

mlflow run -e validate . -P train=False -P registered_model=SpeechRecognitionModel -P model_stage=Production file_id=1089-134686-0000
python main.py --train=False --registered_model=SpeechRecognitionModel --model_stage=Production --file_id=1089-134686-0000

Dashboard

dashboard

Registered model

regmodel

Artifacts

artifacts

Results

testresult

Target: she spoke with a sudden energy which partook of fear and passion and flushed her thin cheek and made her languid eyes flash
Predicted: she spot with a sudn inderge which pert huopk obeer an pasion amd hust her sting cheek and mad herlang wld ise flush
Target: we look for that reward which eye hath not seen nor ear heard neither hath entered into the heart of man
Predicted: we look forthat rewrd which i havt notse mor iear herd meter hat entere incs the hard oftmon
Target: there was a grim smile of amusement on his shrewd face
Predicted: there was a grim smiriel of a mise men puisoreud face
Target: if this matter is not to become public we must give ourselves certain powers and resolve ourselves into a small private court martial
Predicted: if this motere is not to mecome pubotk we mestgoeourselv certan pouors and resal orselveent a srmall pribut court nmatheld
Taarget: no good my dear watson
Predicted: no good my deare otsen 
Target: well she was better though she had had a bad night
Predicted: all she ws bhatter thu shu oid hahabaut night 
Target: the air is heavy the sea is calm
Predicted: the ar is haavyd the see is coomd 
Target: i left you on a continent and here i have the honor of finding you on an island
Predicted: i left you n a contonent and herei hafe the aner a find de youw on an ihalnd 
Target: the young man is in bondage and much i fear his death is decreed
Predicted: th young manis an bondage end much iffeer his dethis de creed 
Target: hay fever a heart trouble caused by falling in love with a grass widow
Predicted: hay fever ahar trbrl cawaese buy fallling itlelov wit the gressh wideo
Target: bravely and generously has he battled in my behalf and this and more will i dare in his service
Predicted: bravly ansjenereusly has he btaoled and miy ba hah andthis en morera welig darind his serves 

Future Scopes

  • There are other Neural Network models like Wav2Vec, Jasper which also be used and tested against for better model performance.
  • This is not a real-time automatic speech recognition project, where human speech would be decoded to text in real-time like in Amazon Alexa and Google Assistant. It takes the audio file as input and returns predicted speech. So, this could be taken to further limits by developing it into real-time automatic speech recognition.
  • The entire project has been done for local deployment. For the Productionisation of the model and datasets AWS s3 bucket and Microsoft Azure could be used, Kubernetes would also serve as a better option for the Productionisation of the model.
Owner
Victor Basu
Hello! I am Data Scientist and I love to do research on Data Science and Machine Learning
Victor Basu
Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

wangle 823 Dec 28, 2022
Repositório do trabalho de introdução a NLP

Trabalho da disciplina de BI NLP Repositório do trabalho da disciplina Introdução a Processamento de Linguagem Natural da pós BI-Master da PUC-RIO. Eq

Leonardo Lins 1 Jan 18, 2022
A simple tool to update bib entries with their official information (e.g., DBLP or the ACL anthology).

Rebiber: A tool for normalizing bibtex with official info. We often cite papers using their arXiv versions without noting that they are already PUBLIS

(Bill) Yuchen Lin 2k Jan 01, 2023
DaCy: The State of the Art Danish NLP pipeline using SpaCy

DaCy: A SpaCy NLP Pipeline for Danish DaCy is a Danish preprocessing pipeline trained in SpaCy. At the time of writing it has achieved State-of-the-Ar

Kenneth Enevoldsen 71 Jan 06, 2023
Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

2 Jan 20, 2022
Yomichad - a Japanese pop-up dictionary that can display readings and English definitions of Japanese words

Yomichad is a Japanese pop-up dictionary that can display readings and English definitions of Japanese words, kanji, and optionally named entities. It is similar to yomichan, 10ten, and rikaikun in s

Jonas Belouadi 7 Nov 07, 2022
Develop open-source Python Arabic NLP libraries that the Arab world will easily use in all Natural Language Processing applications

Develop open-source Python Arabic NLP libraries that the Arab world will easily use in all Natural Language Processing applications

BADER ALABDAN 2 Oct 22, 2022
Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Chinese NER(Named Entity Recognition) using BERT(Softmax, CRF, Span)

Weitang Liu 1.6k Jan 03, 2023
Kestrel Threat Hunting Language

Kestrel Threat Hunting Language What is Kestrel? Why we need it? How to hunt with XDR support? What is the science behind it? You can find all the ans

Open Cybersecurity Alliance 201 Dec 16, 2022
KoBERT - Korean BERT pre-trained cased (KoBERT)

KoBERT KoBERT Korean BERT pre-trained cased (KoBERT) Why'?' Training Environment Requirements How to install How to use Using with PyTorch Using with

SK T-Brain 1k Jan 02, 2023
Neural network sequence labeling model

Sequence labeler This is a neural network sequence labeling system. Given a sequence of tokens, it will learn to assign labels to each token. Can be u

Marek Rei 250 Nov 03, 2022
:mag: Transformers at scale for question answering & neural search. Using NLP via a modular Retriever-Reader-Pipeline. Supporting DPR, Elasticsearch, HuggingFace's Modelhub...

Haystack is an end-to-end framework that enables you to build powerful and production-ready pipelines for different search use cases. Whether you want

deepset 6.4k Jan 09, 2023
This repository contains the code for "Generating Datasets with Pretrained Language Models".

Datasets from Instructions (DINO 🦕 ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces

Timo Schick 154 Jan 01, 2023
A paper list for aspect based sentiment analysis.

Aspect-Based-Sentiment-Analysis A paper list for aspect based sentiment analysis. Survey [IEEE-TAC-20]: Issues and Challenges of Aspect-based Sentimen

jiangqn 419 Dec 20, 2022
Demo programs for the Talking Head Anime from a Single Image 2: More Expressive project.

Demo Code for "Talking Head Anime from a Single Image 2: More Expressive" This repository contains demo programs for the Talking Head Anime

Pramook Khungurn 901 Jan 06, 2023
IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models

IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models. Everything is pure Python and PyTorch based to keep it as simple and beginner-friendly, yet powerful as possible.

Digital Phonetics at the University of Stuttgart 247 Jan 05, 2023
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022
本插件是pcrjjc插件的重置版,可以独立于后端api运行

pcrjjc2 本插件是pcrjjc重置版,不需要使用其他后端api,但是需要自行配置客户端 本项目基于AGPL v3协议开源,由于项目特殊性,禁止基于本项目的任何商业行为 配置方法 环境需求:.net framework 4.5及以上 jre8 别忘了装jre8 别忘了装jre8 别忘了装jre8

132 Dec 26, 2022
STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs

STonKGs STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs. This multimodal Transformer combin

STonKGs 27 Aug 11, 2022