To be a next-generation DL-based phenotype prediction from genome mutations.

Overview
Sequence -----------+--> 3D_structure --> 3D_module --+                                      +--> ?
|                   |                                 |                                      +--> ?
|                   |                                 +--> Joint_module --> Hierarchical_CLF +--> ?
|                   |                                 |                                      +--> ?
+-> NLP_embeddings -+-------> Embedding_module -------+                                      +--> ?

ClynMut: Predicting the Clynical Relevance of Genome Mutations (wip)

To be a next-generation DL-based phenotype prediction from genome mutations. Will use sota NLP and structural techniques.

Planned modules will likely be:

  • 3D learning module
  • NLP embeddings
  • Joint module + Hierarchical classification

The main idea is for the model to learn the prediction in an end-to-end fashion.

Install

$ pip install clynmut

Example Usage:

import torch
from clynmut import *

hier_graph = {"class": "all", 
              "children": [
                {"class": "effect_1", "children": [
                  {"class": "effect_12", "children": []},
                  {"class": "effect_13", "children": []}
                ]},
                {"class": "effect_2", "children": []},
                {"class": "effect_3", "children": []},
              ]}

model = MutPredict(
    seq_embedd_dim = 512,
    struct_embedd_dim = 256, 
    seq_reason_dim = 512, 
    struct_reason_dim = 256,
    hier_graph = hier_graph,
    dropout = 0.0,
    use_msa = False,
    device = None)

seqs = ["AFTQRWHDLKEIMNIDALTWER",
        "GHITSMNWILWVYGFLE"]

pred_dicts = model(seqs, pred_format="dict")

Important topics:

3D structure learning

There are a couple architectures that can be used here. I've been working on 2 of them, which are likely to be used here:

Hierarchical classification

  • A simple custom helper class has been developed for it.

Testing

$ python setup.py test

Datasets:

This package will use the awesome work by Jonathan King at this repository.

To install

$ pip install git+https://github.com/jonathanking/sidechainnet.git

Or

$ git clone https://github.com/jonathanking/sidechainnet.git
$ cd sidechainnet && pip install -e .

Citations:

@article{pejaver_urresti_lugo-martinez_pagel_lin_nam_mort_cooper_sebat_iakoucheva et al._2020,
    title={Inferring the molecular and phenotypic impact of amino acid variants with MutPred2},
    volume={11},
    DOI={10.1038/s41467-020-19669-x},
    number={1},
    journal={Nature Communications},
    author={Pejaver, Vikas and Urresti, Jorge and Lugo-Martinez, Jose and Pagel, Kymberleigh A. and Lin, Guan Ning and Nam, Hyun-Jun and Mort, Matthew and Cooper, David N. and Sebat, Jonathan and Iakoucheva, Lilia M. et al.},
    year={2020}
@article{rehmat_farooq_kumar_ul hussain_naveed_2020, 
    title={Predicting the pathogenicity of protein coding mutations using Natural Language Processing},
    DOI={10.1109/embc44109.2020.9175781},
    journal={2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)},
    author={Rehmat, Naeem and Farooq, Hammad and Kumar, Sanjay and ul Hussain, Sibt and Naveed, Hammad},
    year={2020}
@article{pagel_antaki_lian_mort_cooper_sebat_iakoucheva_mooney_radivojac_2019,
    title={Pathogenicity and functional impact of non-frameshifting insertion/deletion variation in the human genome},
    volume={15},
    DOI={10.1371/journal.pcbi.1007112},
    number={6},
    journal={PLOS Computational Biology},
    author={Pagel, Kymberleigh A. and Antaki, Danny and Lian, AoJie and Mort, Matthew and Cooper, David N. and Sebat, Jonathan and Iakoucheva, Lilia M. and Mooney, Sean D. and Radivojac, Predrag},
    year={2019},
    pages={e1007112}
You might also like...
An Analysis Toolkit for Natural Language Generation (Translation, Captioning, Summarization, etc.)
An Analysis Toolkit for Natural Language Generation (Translation, Captioning, Summarization, etc.)

VizSeq is a Python toolkit for visual analysis on text generation tasks like machine translation, summarization, image captioning, speech translation

Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.
Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.

Summarization, translation, Q&A, text generation and more at blazing speed using a T5 version implemented in ONNX. This package is still in alpha stag

GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training

GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training Code and model from our AAAI 2021 paper

Toolkit for Machine Learning, Natural Language Processing, and Text Generation, in TensorFlow.  This is part of the CASL project: http://casl-project.ai/
Toolkit for Machine Learning, Natural Language Processing, and Text Generation, in TensorFlow. This is part of the CASL project: http://casl-project.ai/

Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides

An Analysis Toolkit for Natural Language Generation (Translation, Captioning, Summarization, etc.)
An Analysis Toolkit for Natural Language Generation (Translation, Captioning, Summarization, etc.)

VizSeq is a Python toolkit for visual analysis on text generation tasks like machine translation, summarization, image captioning, speech translation

Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.
Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.

Summarization, translation, Q&A, text generation and more at blazing speed using a T5 version implemented in ONNX. This package is still in alpha stag

Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Python generation script for BitBirds

BitBirds generation script Intro This is published under MIT license, which means you can do whatever you want with it - entirely at your own risk. Pl

TTS is a library for advanced Text-to-Speech generation.
TTS is a library for advanced Text-to-Speech generation.

TTS is a library for advanced Text-to-Speech generation. It's built on the latest research, was designed to achieve the best trade-off among ease-of-training, speed and quality. TTS comes with pretrained models, tools for measuring dataset quality and already used in 20+ languages for products and research projects.

Comments
  • TO DO LIST

    TO DO LIST

    • [x] Add embeddings functionality
    • [ ] Add 3d structure module (likely-to-be GVP/... based)
    • [x] Add classifier
    • [x] Hierarchical classification helper based on differentiability
    • [x] End-to-end code
    • [ ] data collection
    • [ ] data formatting
    • [ ] Run featurization for all data points (esm1b + af2 structs)
    • [ ] Perform a sample training
    • [ ] Perform sample evaluation
    • [ ] Iterate - improve
    • [ ] ...
    • [ ] idk, will see as we go
    opened by hypnopump 0
Releases(0.0.2)
Owner
Eric Alcaide
For he today that sheds his blood with me; Shall be my brother
Eric Alcaide
✔👉A Centralized WebApp to Ensure Road Safety by checking on with the activities of the driver and activating label generator using NLP.

AI-For-Road-Safety Challenge hosted by Omdena Hyderabad Chapter Original Repo Link : https://github.com/OmdenaAI/omdena-india-roadsafety Final Present

Prathima Kadari 7 Nov 29, 2022
Kerberoast with ACL abuse capabilities

targetedKerberoast targetedKerberoast is a Python script that can, like many others (e.g. GetUserSPNs.py), print "kerberoast" hashes for user accounts

Shutdown 213 Dec 22, 2022
NLTK Source

Natural Language Toolkit (NLTK) NLTK -- the Natural Language Toolkit -- is a suite of open source Python modules, data sets, and tutorials supporting

Natural Language Toolkit 11.4k Jan 04, 2023
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
ChessCoach is a neural network-based chess engine capable of natural-language commentary.

ChessCoach is a neural network-based chess engine capable of natural-language commentary.

Chris Butner 380 Dec 03, 2022
Source code for AAAI20 "Generating Persona Consistent Dialogues by Exploiting Natural Language Inference".

Generating Persona Consistent Dialogues by Exploiting Natural Language Inference Source code for RCDG model in AAAI20 Generating Persona Consistent Di

16 Oct 08, 2022
Sentence Embeddings with BERT & XLNet

Sentence Transformers: Multilingual Sentence Embeddings using BERT / RoBERTa / XLM-RoBERTa & Co. with PyTorch This framework provides an easy method t

Ubiquitous Knowledge Processing Lab 9.1k Jan 02, 2023
CoNLL-English NER Task (NER in English)

CoNLL-English NER Task en | ch Motivation Course Project review the pytorch framework and sequence-labeling task practice using the transformers of Hu

Kevin 2 Jan 14, 2022
TLA - Twitter Linguistic Analysis

TLA - Twitter Linguistic Analysis Tool for linguistic analysis of communities TLA is built using PyTorch, Transformers and several other State-of-the-

Tushar Sarkar 47 Aug 14, 2022
Simple NLP based project without any use of AI

Simple NLP based project without any use of AI

Shripad Rao 1 Apr 26, 2022
This repository contains examples of Task-Informed Meta-Learning

Task-Informed Meta-Learning This repository contains examples of Task-Informed Meta-Learning (paper). We consider two tasks: Crop Type Classification

10 Dec 19, 2022
Spacy-ginza-ner-webapi - Named Entity Recognition API with spaCy and GiNZA

Named Entity Recognition API with spaCy and GiNZA I wrote a blog post about this

Yuki Okuda 3 Feb 27, 2022
Weaviate demo with the text2vec-openai module

Weaviate demo with the text2vec-openai module This repository contains an example of how to use the Weaviate text2vec-openai module. When using this d

SeMI Technologies 11 Nov 11, 2022
Saptak Bhoumik 14 May 24, 2022
Shirt Bot is a discord bot which uses GPT-3 to generate text

SHIRT BOT · Shirt Bot is a discord bot which uses GPT-3 to generate text. Made by Cyclcrclicly#3420 (474183744685604865) on Discord. Support Server EX

31 Oct 31, 2022
CCF BDCI 2020 房产行业聊天问答匹配赛道 A榜47/2985

CCF BDCI 2020 房产行业聊天问答匹配 A榜47/2985 赛题描述详见:https://www.datafountain.cn/competitions/474 文件说明 data: 存放训练数据和测试数据以及预处理代码 model_bert.py: 网络模型结构定义 adv_train

shuo 40 Sep 28, 2022
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.

keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: Marketing Sea

Gagan Bhatia 364 Jan 03, 2023
Legal text retrieval for python

legal-text-retrieval Overview This system contains 2 steps: generate training data containing negative sample found by mixture score of cosine(tfidf)

Nguyễn Minh Phương 22 Dec 06, 2022