TLA - Twitter Linguistic Analysis

Related tags

Text Data & NLPTLA
Overview

TLA - Twitter Linguistic Analysis

Tool for linguistic analysis of communities

TLA is built using PyTorch, Transformers and several other State-of-the-Art machine learning techniques and it aims to expedite and structure the cumbersome process of collecting, labeling, and analyzing data from Twitter for a corpus of languages while providing detailed labeled datasets for all the languages. The analysis provided by TLA will also go a long way in understanding the sentiments of different linguistic communities and come up with new and innovative solutions for their problems based on the analysis. List of languages our library provides support for are listed as follows:

Language Code Language Code
English en Hindi hi
Swedish sv Thai th
Dutch nl Japanese ja
Turkish tr Urdu ur
Indonesian id Portuguese pt
French fr Chinese zn-ch
Spanish es Persian fa
Romainain ro Russian ru

Features

  • Provides 16 labeled Datasets for different languages for analysis.
  • Implements Bert based architecture to identify languages.
  • Provides Functionalities to Extract,process and label tweets from twitter.
  • Provides a Random Forest classifier to implement sentiment analysis on any string.

Installation :

pip install --upgrade https://github.com/tusharsarkar3/TLA.git

Overview

Extract data
from TLA.Data.get_data import store_data
store_data('en',False)

This will extract and store the unlabeled data in a new directory inside data named datasets.

Label data
from TLA.Datasets.get_lang_data import language_data
df = language_data('en')
print(df)

This will print the labeled data that we have already collected.

Classify languages
Training

Training can be done in the following way:

from TLA.Lang_Classify.train import train_lang
train_lang(path_to_dataset,epochs)
Prediction

Inference is done in the following way:

from TLA.Lang_Classify.predict import predict
model = get_model(path_to_weights)
preds = predict(dataframe_to_be_used,model)
Analyse
Training

Training can be done in the following way:

from TLA.Analyse.train_rf import train_rf
train_rf(path_to_dataset)

This will store all the vectorizers and models in a seperate directory named saved_rf and saved_vec and they are present inside Analysis directory. Further instructions for training multiple languages is given in the next section which shows how to run the commands using CLI

Final Analysis

Analysis is done in the following way:

from TLA.Analysis.analyse import analyse_data 
analyse_data(path_to_weights)

This will store the final analysis as .csv inside a new directory named analysis.

Overview with Git

Installation another method
git clone https://github.com/tusharsarkar3/TLA.git
Extract data Navigate to the required directory
cd Data

Run the following command:

python get_data.py --lang en --process True

Lang flag is used to input the language of the dataset that is required and process flag shows where pre-processing should be done before returning the data. Give the following codes in the lang flag wrt the required language:

Loading Dataset

To load a dataset run the following command in python.

df= pd.read_csv("TLA/TLA/Datasets/get_data_en.csv")
 

The command will return a dataframe consisting of the data for the specific language requested.

In the phrase get_data_en, en can be sunstituted by the desired language code to load the dataframe for the specific language.

Pre-Processing

To preprocess a given string run the following command.

In your terminal use code

cd Data

then run the command in python

from TLA.Data import Pre_Process_Tweets

df=Pre_Process_Tweets.pre_process_tweet(df)

Here the function pre_process_tweet takes an input as a dataframe of tweets and returns an output of a dataframe with the list of preprocessed words for a particular tweet next to the tweet in the dataframe.

Analysis Training To train a random forest classifier for the purpose of sentiment analysis run the following command in your terminal.
cd Analysis

then

python train.rf --path "path to your datafile" --train_all_datasets False

here the --path flag represents the path to the required dataset you want to train the Random Forest Classifier on the --train_all_datasets flag is a boolean which can be used to train the model on multiple datasets at once.

The output is a file with the a .pkl file extention saved in the folder at location "TLA\Analysis\saved_rf{}.pkl" The output for vectorization of is stored in a .pkl file in the directory "TLA\Analysis\saved_vec{}.pkl"

Get Sentiment

To get the sentiment of any string use the following code.

In your terminal type

cd Analysis

then in your terminal type

python get_sentiment.py --prediction "Your string for prediction to be made upon" --lang "en"

here the --prediction flag collects the string for which you want to get the sentiment for. the --lang represents the language code representing the language you typed your string in.

The output is a sentiment which is either positive or negative depending on your string.

Statistics

To get a comprehensive statistic on sentiment of datasets run the following command.

In your terminal type

cd Analysis

then

python analyse.py 

This will give you an output of a table1.csv file at the location 'TLA\Analysis\analysis\table1.csv' comprising of statistics relating to the percentage of positive or negative tweets for a given language dataset.

It will also give a table2.csv file at 'TLA\Analysis\analysis\table2.csv' comprising of statistics for all languages combined.

Language Classification Training To train a model for language classfication on a given dataset run the following commands.

In your terminal run

cd Lang_Classify

then run

python train.py --data "path for your dataset" --model "path to weights if pretrained" --epochs 4

The --data flag requires the path to your training dataset.

The --model flag requires the path to the model you want to implement

The --epoch flag represents the epochs you want to train your model for.

The output is a file with a .pt extention named saved_wieghts_full.pt where your trained wieghst are stored.

Prediction To make prediction on any given string Us ethe following code.

In your terminal type

cd Lang_Classify

then run the code

python predict.py --predict "Text/DataFrame for language to predicted" --weights " Path for the stored weights of your model " 

The --predict flag requires the string you want to get the language for.

The --wieghts flag is the path for the stored wieghts you want to run your model on to make predictions.

The outputs is the language your string was typed in.


Results:

img

Performance of TLA ( Loss vs epochs)

Language Total tweets Positive Tweets Percentage Negative Tweets Percentage
English 500 66.8 33.2
Spanish 500 61.4 38.6
Persian 50 52 48
French 500 53 47
Hindi 500 62 38
Indonesian 500 63.4 36.6
Japanese 500 85.6 14.4
Dutch 500 84.2 15.8
Portuguese 500 61.2 38.8
Romainain 457 85.55 14.44
Russian 213 62.91 37.08
Swedish 420 80.23 19.76
Thai 424 71.46 28.53
Turkish 500 67.8 32.2
Urdu 42 69.04 30.95
Chinese 500 80.6 19.4

Reference:

@misc{sarkar2021tla,
     title={TLA: Twitter Linguistic Analysis}, 
     author={Tushar Sarkar and Nishant Rajadhyaksha},
     year={2021},
     eprint={2107.09710},
     archivePrefix={arXiv},
     primaryClass={cs.CL}
}
@misc{640cba8b-35cb-475e-ab04-62d079b74d13,
 title = {TLA: Twitter Linguistic Analysis},
 author = {Tushar Sarkar and Nishant Rajadhyaksha},
  journal = {Software Impacts},
 doi = {10.24433/CO.6464530.v1}, 
 howpublished = {\url{https://www.codeocean.com/}},
 year = 2021,
 month = {6},
 version = {v1}
}

Features to be added :

  • Access to more language
  • Creating GUI based system for better accesibility
  • Improving performance of the baseline model

Developed by Tushar Sarkar and Nishant Rajadhyaksha

Owner
Tushar Sarkar
I love solving problems with data
Tushar Sarkar
A Facebook Messenger Chatbot using NLP

A Facebook Messenger Chatbot using NLP This project is about creating a messenger chatbot using basic NLP techniques and models like Logistic Regressi

6 Nov 20, 2022
🗣️ NALP is a library that covers Natural Adversarial Language Processing.

NALP: Natural Adversarial Language Processing Welcome to NALP. Have you ever wanted to create natural text from raw sources? If yes, NALP is for you!

Gustavo Rosa 21 Aug 12, 2022
🤕 spelling exceptions builder for lazy people

🤕 spelling exceptions builder for lazy people

Vlad Bokov 3 May 12, 2022
This repository contains the codes for LipGAN. LipGAN was published as a part of the paper titled "Towards Automatic Face-to-Face Translation".

LipGAN Generate realistic talking faces for any human speech and face identity. [Paper] | [Project Page] | [Demonstration Video] Important Update: A n

Rudrabha Mukhopadhyay 438 Dec 31, 2022
Research code for the paper "Fine-tuning wav2vec2 for speaker recognition"

Fine-tuning wav2vec2 for speaker recognition This is the code used to run the experiments in https://arxiv.org/abs/2109.15053. Detailed logs of each t

Nik 103 Dec 26, 2022
An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI, torch2trt to accelerate. our model support for int8, dynamic input and profiling. (Nvidia-Alibaba-TensoRT-hackathon2021)

Ultra_Fast_Lane_Detection_TensorRT An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI to accelerate. our model support for in

steven.yan 121 Dec 27, 2022
Quick insights from Zoom meeting transcripts using Graph + NLP

Transcript Analysis - Graph + NLP This program extracts insights from Zoom Meeting Transcripts (.vtt) using TigerGraph and NLTK. In order to run this

Advit Deepak 7 Sep 17, 2022
Question and answer retrieval in Turkish with BERT

trfaq Google supported this work by providing Google Cloud credit. Thank you Google for supporting the open source! 🎉 What is this? At this repo, I'm

M. Yusuf Sarıgöz 13 Oct 10, 2022
fastai ulmfit - Pretraining the Language Model, Fine-Tuning and training a Classifier

fast.ai ULMFiT with SentencePiece from pretraining to deployment Motivation: Why even bother with a non-BERT / Transformer language model? Short answe

Florian Leuerer 26 May 27, 2022
nlp基础任务

NLP算法 说明 此算法仓库包括文本分类、序列标注、关系抽取、文本匹配、文本相似度匹配这五个主流NLP任务,涉及到22个相关的模型算法。 框架结构 文件结构 all_models ├── Base_line │   ├── __init__.py │   ├── base_data_process.

zuxinqi 23 Sep 22, 2022
Protein Language Model

ProteinLM We pretrain protein language model based on Megatron-LM framework, and then evaluate the pretrained model results on TAPE (Tasks Assessing P

THUDM 77 Dec 27, 2022
The official repository of the ISBI 2022 KNIGHT Challenge

KNIGHT The official repository holding the data for the ISBI 2022 KNIGHT Challenge About The KNIGHT Challenge asks teams to develop models to classify

Nicholas Heller 4 Jan 22, 2022
A flask application to predict the speech emotion of any .wav file.

This is a speech emotion recognition app. It will allow you to train a modular MLP model with the RAVDESS dataset, and then use that model with a flask application to predict the speech emotion of an

Aryan Vijaywargia 2 Dec 15, 2021
Phrase-Based & Neural Unsupervised Machine Translation

Unsupervised Machine Translation This repository contains the original implementation of the unsupervised PBSMT and NMT models presented in Phrase-Bas

Facebook Research 1.5k Dec 28, 2022
Scene Text Retrieval via Joint Text Detection and Similarity Learning

This is the code of "Scene Text Retrieval via Joint Text Detection and Similarity Learning". For more details, please refer to our CVPR2021 paper.

79 Nov 29, 2022
Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API

gpt3-instruct-sandbox Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API Description This project updates an existing GPT-3 san

312 Jan 03, 2023
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 50 Dec 21, 2022
Search for documents in a domain through Google. The objective is to extract metadata

MetaFinder - Metadata search through Google _____ __ ___________ .__ .___ / \

Josué Encinar 85 Dec 16, 2022
A simple word search made in python

Word Search Puzzle A simple word search made in python Usage $ python3 main.py -h usage: main.py [-h] [-c] [-f FILE] Generates a word s

Magoninho 16 Mar 10, 2022
Python library for processing Chinese text

SnowNLP: Simplified Chinese Text Processing SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob

Rui Wang 6k Jan 02, 2023