This repository contains the codes for LipGAN. LipGAN was published as a part of the paper titled "Towards Automatic Face-to-Face Translation".

Related tags

Text Data & NLPLipGAN
Overview

LipGAN

Generate realistic talking faces for any human speech and face identity.

[Paper] | [Project Page] | [Demonstration Video]

image

Important Update:

A new, improved work that can produce significantly more accurate and natural results on moving talking face videos is available here: https://github.com/Rudrabha/Wav2Lip


Code without MATLAB dependency is now available in fully_pythonic branch. Note that the models in both the branches are not entirely identical and either one may perform better than the other in several cases. The model used at the time of the paper's publication is with the MATLAB dependency and this is the one that has been extensively tested. Please feel free to experiment with the fully_pythonic branch if you do not want to have the MATLAB dependency. A Google Colab notebook is also available for the fully_pythonic branch. [Credits: Kirill]


Features

  • Can handle in-the-wild face poses and expressions.
  • Can handle speech in any language and is robust to background noise.
  • Paste faces back into the original video with minimal/no artefacts --- can potentially correct lip sync errors in dubbed movies!
  • Complete multi-gpu training code, pre-trained models available.
  • Fast inference code to generate results from the pre-trained models

Prerequisites

  • Python >= 3.5
  • ffmpeg: sudo apt-get install ffmpeg
  • Matlab R2016a (for audio preprocessing, this dependency will be removed in later versions)
  • Install necessary packages using pip install -r requirements.txt
  • Install keras-contrib pip install git+https://www.github.com/keras-team/keras-contrib.git

Getting the weights

Download checkpoints of the folowing models into the logs/ folder

Generating talking face videos using pretrained models (Inference)

LipGAN takes speech features in the form of MFCCs and we need to preprocess our input audio file to get the MFCC features. We use the create_mat.m script to create .mat files for a given audio.

cd matlab
matlab -nodesktop
>> create_mat(input_wav_or_mp4_file, path_to_output.mat) # replace with file paths
>> exit
cd ..

Usage #1: Generating correct lip motion on a random talking face video

Here, we are given an audio input (as .mat MFCC features) and a video of an identity speaking something entirely different. LipGAN can synthesize the correct lip motion for the given audio and overlay it on the given video of the speaking identity (Example #1, #2 in the above image).

python batch_inference.py --checkpoint_path <saved_checkpoint> --face <random_input_video> --fps <fps_of_input_video> --audio <guiding_audio_wav_file> --mat <mat_file_from_above> --results_dir <folder_to_save_generated_video>

The generated result_voice.mp4 will contain the input video lip synced with the given input audio. Note that the FPS parameter is by default 25, make sure you set the FPS correctly for your own input video.

Usage #2: Generating talking video from a single face image

Refer to example #3 in the above picture. Given an audio, LipGAN generates a correct mouth shape (viseme) at each time-step and overlays it on the input image. The sequence of generated mouth shapes yields a talking face video.

python batch_inference.py --checkpoint_path <saved_checkpoint> --face <random_input_face> --audio <guiding_audio_wav_file> --mat <mat_file_from_above> --results_dir <folder_to_save_generated_video>

Please use the --pads argument to correct for inaccurate face detections such as not covering the chin region correctly. This can improve the results further.

More options

python batch_inference.py --help

Training LipGAN

We illustrate the training pipeline using the LRS2 dataset. Adapting for other datasets would involve small modifications to the code.

Preprocess the dataset

We need to do two things: (i) Save the MFCC features from the audio and (ii) extract and save the facial crops of each frame in the video.

LRS2 dataset folder structure
data_root (mvlrs_v1)
├── main, pretrain (we use only main folder in this work)
|	├── list of folders
|	│   ├── five-digit numbered video IDs ending with (.mp4)
Saving the MFCC features

We use MATLAB to save the MFCC files for all the videos present in the dataset. Refer to the fully_pythonic branch if you do not want to use MATLAB.

# Please copy the appropriate LRS2 train split's filelist.txt to the filelists/ folder. The example below is shown for LRS2.
cd matlab
matlab -nodesktop
>> preprocess_mat('../filelists/train.txt', 'mvlrs_v1/main/') # replace with appropriate file paths for other datasets.
>> exit
cd ..
Saving the Face Crops of all Video Frames

We preprocess the video files by detecting faces using a face detector from dlib.

# Please copy the appropriate LRS2 split's filelist.txt to the filelists/ folder. Example below is shown for LRS2. 
python preprocess.py --split [train|pretrain|val] --videos_data_root mvlrs_v1/ --final_data_root <folder_to_store_preprocessed_files>

### More options while preprocessing (like number of workers, image size etc.)
python preprocess.py --help
Final preprocessed folder structure
data_root (mvlrs_v1)
├── main, pretrain (we use only main folder in this work)
|	├── list of folders
|	│   ├── folders with five-digit video IDs 
|	│   |	 ├── 0.jpg, 1.jpg .... (extracted face crops of each frame)
|	│   |	 ├── 0.npz, 1.npz .... (mfcc features corresponding to each frame)

Train the generator only

As training LipGAN is computationally intensive, you can just train the generator alone for quick, decent results.

python train_unet.py --data_root <path_to_preprocessed_dataset>

### Extensive set of training options available. Please run and refer to:
python train_unet.py --help

Train LipGAN

python train.py --data_root <path_to_preprocessed_dataset>

### Extensive set of training options available. Please run and refer to:
python train.py --help

License and Citation

The software is licensed under the MIT License. Please cite the following paper if you have use this code:

@inproceedings{KR:2019:TAF:3343031.3351066,
  author = {K R, Prajwal and Mukhopadhyay, Rudrabha and Philip, Jerin and Jha, Abhishek and Namboodiri, Vinay and Jawahar, C V},
  title = {Towards Automatic Face-to-Face Translation},
  booktitle = {Proceedings of the 27th ACM International Conference on Multimedia}, 
  series = {MM '19}, 
  year = {2019},
  isbn = {978-1-4503-6889-6},
  location = {Nice, France},
   = {1428--1436},
  numpages = {9},
  url = {http://doi.acm.org/10.1145/3343031.3351066},
  doi = {10.1145/3343031.3351066},
  acmid = {3351066},
  publisher = {ACM},
  address = {New York, NY, USA},
  keywords = {cross-language talking face generation, lip synthesis, neural machine translation, speech to speech translation, translation systems, voice transfer},
}

Acknowledgements

Part of the MATLAB code is taken from the an implementation of the Talking Face Generation implementation. We thank the authors for releasing their code.

Code for lyric-section-to-comment generation based on huggingface transformers.

CommentGeneration Code for lyric-section-to-comment generation based on huggingface transformers. Migrate Guyu model and code (both 12-layers and 24-l

Yawei Sun 8 Sep 04, 2021
Trained T5 and T5-large model for creating keywords from text

text to keywords Trained T5-base and T5-large model for creating keywords from text. Supported languages: ru Pretraining Large version | Pretraining B

Danil 61 Nov 24, 2022
Download videos from YouTube/Twitch/Twitter right in the Windows Explorer, without installing any shady shareware apps

youtube-dl and ffmpeg Windows Explorer Integration Download videos from YouTube/Twitch/Twitter and more (any platform that is supported by youtube-dl)

Wolfgang 226 Dec 30, 2022
Yes it's true :broken_heart:

Information WARNING: No longer hosted If you would like to be on this repo's readme simply fork or star it! Forks 1 - Flowzii 2 - Errorcrafter 3 - vk-

Dropout 66 Dec 31, 2022
Code for using and evaluating SpanBERT.

SpanBERT This repository contains code and models for the paper: SpanBERT: Improving Pre-training by Representing and Predicting Spans. If you prefer

Meta Research 798 Dec 30, 2022
Nateve compiler developed with python.

Adam Adam is a Nateve Programming Language compiler developed using Python. Nateve Nateve is a new general domain programming language open source ins

Nateve 7 Jan 15, 2022
Spooky Skelly For Python

_____ _ _____ _ _ _ | __| ___ ___ ___ | |_ _ _ | __|| |_ ___ | || | _ _ |__ || . || . || . || '

Kur0R1uka 1 Dec 23, 2021
This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection"

Splinter This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection", to

Ori Ram 88 Dec 31, 2022
justCTF [*] 2020 challenges sources

justCTF [*] 2020 This repo contains sources for justCTF [*] 2020 challenges hosted by justCatTheFish. TLDR: Run a challenge with ./run.sh (requires Do

justCatTheFish 25 Dec 27, 2022
NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking

pretrain4ir_tutorial NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking 用作NLPIR实验室, Pre-training

ZYMa 12 Apr 07, 2022
A repository to run gpt-j-6b on low vram machines (4.2 gb minimum vram for 2000 token context, 3.5 gb for 1000 token context). Model loading takes 12gb free ram.

Basic-UI-for-GPT-J-6B-with-low-vram A repository to run GPT-J-6B on low vram systems by using both ram, vram and pinned memory. There seem to be some

90 Dec 25, 2022
A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models

wav2vec-toolkit A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models This repository accompanies the

Anton Lozhkov 29 Oct 23, 2022
Sentiment-Analysis and EDA on the IMDB Movie Review Dataset

Sentiment-Analysis and EDA on the IMDB Movie Review Dataset The main part of the work focuses on the exploration and study of different approaches whi

Nikolas Petrou 1 Jan 12, 2022
Beautiful visualizations of how language differs among document types.

Scattertext 0.1.0.0 A tool for finding distinguishing terms in corpora and displaying them in an interactive HTML scatter plot. Points corresponding t

Jason S. Kessler 2k Dec 27, 2022
Creating a chess engine using GPT-3

GPT3Chess Creating a chess engine using GPT-3 Code for my article : https://towardsdatascience.com/gpt-3-play-chess-d123a96096a9 My game (white) vs GP

19 Dec 17, 2022
Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger

Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger In this project, our aim is to tune, compare, and contrast the perf

Chirag Daryani 0 Dec 25, 2021
A paper list for aspect based sentiment analysis.

Aspect-Based-Sentiment-Analysis A paper list for aspect based sentiment analysis. Survey [IEEE-TAC-20]: Issues and Challenges of Aspect-based Sentimen

jiangqn 419 Dec 20, 2022
Search for documents in a domain through Google. The objective is to extract metadata

MetaFinder - Metadata search through Google _____ __ ___________ .__ .___ / \

Josué Encinar 85 Dec 16, 2022
[KBS] Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks

#Sentic GCN Introduction This repository was used in our paper: Aspect-Based Sentiment Analysis via Affective Knowledge Enhanced Graph Convolutional N

Akuchi 35 Nov 16, 2022
Residual2Vec: Debiasing graph embedding using random graphs

Residual2Vec: Debiasing graph embedding using random graphs This repository contains the code for S. Kojaku, J. Yoon, I. Constantino, and Y.-Y. Ahn, R

SADAMORI KOJAKU 5 Oct 12, 2022