This repository contains the codes for LipGAN. LipGAN was published as a part of the paper titled "Towards Automatic Face-to-Face Translation".

Related tags

Text Data & NLPLipGAN
Overview

LipGAN

Generate realistic talking faces for any human speech and face identity.

[Paper] | [Project Page] | [Demonstration Video]

image

Important Update:

A new, improved work that can produce significantly more accurate and natural results on moving talking face videos is available here: https://github.com/Rudrabha/Wav2Lip


Code without MATLAB dependency is now available in fully_pythonic branch. Note that the models in both the branches are not entirely identical and either one may perform better than the other in several cases. The model used at the time of the paper's publication is with the MATLAB dependency and this is the one that has been extensively tested. Please feel free to experiment with the fully_pythonic branch if you do not want to have the MATLAB dependency. A Google Colab notebook is also available for the fully_pythonic branch. [Credits: Kirill]


Features

  • Can handle in-the-wild face poses and expressions.
  • Can handle speech in any language and is robust to background noise.
  • Paste faces back into the original video with minimal/no artefacts --- can potentially correct lip sync errors in dubbed movies!
  • Complete multi-gpu training code, pre-trained models available.
  • Fast inference code to generate results from the pre-trained models

Prerequisites

  • Python >= 3.5
  • ffmpeg: sudo apt-get install ffmpeg
  • Matlab R2016a (for audio preprocessing, this dependency will be removed in later versions)
  • Install necessary packages using pip install -r requirements.txt
  • Install keras-contrib pip install git+https://www.github.com/keras-team/keras-contrib.git

Getting the weights

Download checkpoints of the folowing models into the logs/ folder

Generating talking face videos using pretrained models (Inference)

LipGAN takes speech features in the form of MFCCs and we need to preprocess our input audio file to get the MFCC features. We use the create_mat.m script to create .mat files for a given audio.

cd matlab
matlab -nodesktop
>> create_mat(input_wav_or_mp4_file, path_to_output.mat) # replace with file paths
>> exit
cd ..

Usage #1: Generating correct lip motion on a random talking face video

Here, we are given an audio input (as .mat MFCC features) and a video of an identity speaking something entirely different. LipGAN can synthesize the correct lip motion for the given audio and overlay it on the given video of the speaking identity (Example #1, #2 in the above image).

python batch_inference.py --checkpoint_path <saved_checkpoint> --face <random_input_video> --fps <fps_of_input_video> --audio <guiding_audio_wav_file> --mat <mat_file_from_above> --results_dir <folder_to_save_generated_video>

The generated result_voice.mp4 will contain the input video lip synced with the given input audio. Note that the FPS parameter is by default 25, make sure you set the FPS correctly for your own input video.

Usage #2: Generating talking video from a single face image

Refer to example #3 in the above picture. Given an audio, LipGAN generates a correct mouth shape (viseme) at each time-step and overlays it on the input image. The sequence of generated mouth shapes yields a talking face video.

python batch_inference.py --checkpoint_path <saved_checkpoint> --face <random_input_face> --audio <guiding_audio_wav_file> --mat <mat_file_from_above> --results_dir <folder_to_save_generated_video>

Please use the --pads argument to correct for inaccurate face detections such as not covering the chin region correctly. This can improve the results further.

More options

python batch_inference.py --help

Training LipGAN

We illustrate the training pipeline using the LRS2 dataset. Adapting for other datasets would involve small modifications to the code.

Preprocess the dataset

We need to do two things: (i) Save the MFCC features from the audio and (ii) extract and save the facial crops of each frame in the video.

LRS2 dataset folder structure
data_root (mvlrs_v1)
├── main, pretrain (we use only main folder in this work)
|	├── list of folders
|	│   ├── five-digit numbered video IDs ending with (.mp4)
Saving the MFCC features

We use MATLAB to save the MFCC files for all the videos present in the dataset. Refer to the fully_pythonic branch if you do not want to use MATLAB.

# Please copy the appropriate LRS2 train split's filelist.txt to the filelists/ folder. The example below is shown for LRS2.
cd matlab
matlab -nodesktop
>> preprocess_mat('../filelists/train.txt', 'mvlrs_v1/main/') # replace with appropriate file paths for other datasets.
>> exit
cd ..
Saving the Face Crops of all Video Frames

We preprocess the video files by detecting faces using a face detector from dlib.

# Please copy the appropriate LRS2 split's filelist.txt to the filelists/ folder. Example below is shown for LRS2. 
python preprocess.py --split [train|pretrain|val] --videos_data_root mvlrs_v1/ --final_data_root <folder_to_store_preprocessed_files>

### More options while preprocessing (like number of workers, image size etc.)
python preprocess.py --help
Final preprocessed folder structure
data_root (mvlrs_v1)
├── main, pretrain (we use only main folder in this work)
|	├── list of folders
|	│   ├── folders with five-digit video IDs 
|	│   |	 ├── 0.jpg, 1.jpg .... (extracted face crops of each frame)
|	│   |	 ├── 0.npz, 1.npz .... (mfcc features corresponding to each frame)

Train the generator only

As training LipGAN is computationally intensive, you can just train the generator alone for quick, decent results.

python train_unet.py --data_root <path_to_preprocessed_dataset>

### Extensive set of training options available. Please run and refer to:
python train_unet.py --help

Train LipGAN

python train.py --data_root <path_to_preprocessed_dataset>

### Extensive set of training options available. Please run and refer to:
python train.py --help

License and Citation

The software is licensed under the MIT License. Please cite the following paper if you have use this code:

@inproceedings{KR:2019:TAF:3343031.3351066,
  author = {K R, Prajwal and Mukhopadhyay, Rudrabha and Philip, Jerin and Jha, Abhishek and Namboodiri, Vinay and Jawahar, C V},
  title = {Towards Automatic Face-to-Face Translation},
  booktitle = {Proceedings of the 27th ACM International Conference on Multimedia}, 
  series = {MM '19}, 
  year = {2019},
  isbn = {978-1-4503-6889-6},
  location = {Nice, France},
   = {1428--1436},
  numpages = {9},
  url = {http://doi.acm.org/10.1145/3343031.3351066},
  doi = {10.1145/3343031.3351066},
  acmid = {3351066},
  publisher = {ACM},
  address = {New York, NY, USA},
  keywords = {cross-language talking face generation, lip synthesis, neural machine translation, speech to speech translation, translation systems, voice transfer},
}

Acknowledgements

Part of the MATLAB code is taken from the an implementation of the Talking Face Generation implementation. We thank the authors for releasing their code.

A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code or write code yourself

Scriptfab - What is it? A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code

DevNugget 3 Jul 28, 2021
Espial is an engine for automated organization and discovery of personal knowledge

Live Demo (currently not running, on it) Espial is an engine for automated organization and discovery in knowledge bases. It can be adapted to run wit

Uzay-G 159 Dec 30, 2022
Utilizing RBERT model for KLUE Relation Extraction task

RBERT for Relation Extraction task for KLUE Project Description Relation Extraction task is one of the task of Korean Language Understanding Evaluatio

snoop2head 14 Nov 15, 2022
Pipeline for fast building text classification TF-IDF + LogReg baselines.

Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif

Dani El-Ayyass 57 Dec 07, 2022
Multilingual text (NLP) processing toolkit

polyglot Polyglot is a natural language pipeline that supports massive multilingual applications. Free software: GPLv3 license Documentation: http://p

RAMI ALRFOU 2.1k Jan 07, 2023
Training and evaluation codes for the BertGen paper (ACL-IJCNLP 2021)

BERTGEN This repository is the implementation of the paper "BERTGEN: Multi-task Generation through BERT" (https://arxiv.org/abs/2106.03484). The codeb

<a href=[email protected]"> 9 Oct 26, 2022
A 30000+ Chinese MRC dataset - Delta Reading Comprehension Dataset

Delta Reading Comprehension Dataset 台達閱讀理解資料集 Delta Reading Comprehension Dataset (DRCD) 屬於通用領域繁體中文機器閱讀理解資料集。 本資料集期望成為適用於遷移學習之標準中文閱讀理解資料集。 本資料集從2,108篇

272 Dec 15, 2022
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

Justin Terry 32 Nov 09, 2021
PyTorch source code of NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models"

This repository contains source code for NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models" (P

Alexandra Chronopoulou 89 Aug 12, 2022
Implementation for paper BLEU: a Method for Automatic Evaluation of Machine Translation

BLEU Score Implementation for paper: BLEU: a Method for Automatic Evaluation of Machine Translation Author: Ba Ngoc from ProtonX BLEU score is a popul

Ngoc Nguyen Ba 6 Oct 07, 2021
To be a next-generation DL-based phenotype prediction from genome mutations.

Sequence -----------+-- 3D_structure -- 3D_module --+ +-- ? | |

Eric Alcaide 18 Jan 11, 2022
Extracting Summary Knowledge Graphs from Long Documents

GraphSum This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other basel

Zeqiu (Ellen) Wu 10 Oct 21, 2022
Need: Image Search With Python

Need: Image Search The problem is that a user needs to search for a specific ima

Surya Komandooru 1 Dec 30, 2021
Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS)

Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS) Yoonhyung Lee, Joongbo Shin, Kyomin Jung Abstract: Although early

LEE YOON HYUNG 147 Dec 05, 2022
Paddle2.x version AI-Writer

Paddle2.x 版本AI-Writer 用魔改 GPT 生成网文。Tuned GPT for novel generation.

yujun 74 Jan 04, 2023
Sequence-to-Sequence Framework in PyTorch

nmtpytorch allows training of various end-to-end neural architectures including but not limited to neural machine translation, image captioning and au

LIUM 395 Nov 21, 2022
Index different CKAN entities in Solr, not just datasets

ckanext-sitesearch Index different CKAN entities in Solr, not just datasets Requirements This extension requires CKAN 2.9 or higher and Python 3 Featu

Open Knowledge Foundation 3 Dec 02, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Jan 03, 2023
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
Fine-tuning scripts for evaluating transformer-based models on KLEJ benchmark.

The KLEJ Benchmark Baselines The KLEJ benchmark (Kompleksowa Lista Ewaluacji Językowych) is a set of nine evaluation tasks for the Polish language und

Allegro Tech 17 Oct 18, 2022