Question and answer retrieval in Turkish with BERT

Overview

trfaq

Google supported this work by providing Google Cloud credit. Thank you Google for supporting the open source! 🎉

What is this?

At this repo, I'm releasing the training script and a full working inference example for my model mys/bert-base-turkish-cased-nli-mean-faq-mnr published on HuggingFace. Please note that the training code at finetune_tf.py is a simplified version of the original, which is intended for educational purposes and not optimized for anything. However, it contains an implementation of the Multiple Negatives Symmetric Ranking loss, and you can use it in your own work. Additionally, I cleaned and filtered the Turkish subset of the clips/mqa dataset, as it contains lots of mis-encoded texts. You can download this cleaned dataset here.

Model

This is a finetuned version of mys/bert-base-turkish-cased-nli-mean for FAQ retrieval, which is itself a finetuned version of dbmdz/bert-base-turkish-cased for NLI. It maps questions & answers to 768 dimensional vectors to be used for FAQ-style chatbots and answer retrieval in question-answering pipelines. It was trained on the Turkish subset of clips/mqa dataset after some cleaning/ filtering and with a Multiple Negatives Symmetric Ranking loss. Before finetuning, I added two special tokens to the tokenizer (i.e., for questions and for answers) and resized the model embeddings, so you need to prepend the relevant tokens to the sequences before feeding them into the model. Please have a look at my accompanying repo to see how it was finetuned and how it can be used in inference. The following code snippet is an excerpt from the inference at the repo.

Usage

see inference.py for a full working example.

" + q for q in questions] answers = ["" + a for a in answers] def answer_faq(model, tokenizer, questions, answers, return_similarities=False): q_len = len(questions) tokens = tokenizer(questions + answers, padding=True, return_tensors='tf') embs = model(**tokens)[0] attention_masks = tf.cast(tokens['attention_mask'], tf.float32) sample_length = tf.reduce_sum(attention_masks, axis=-1, keepdims=True) masked_embs = embs * tf.expand_dims(attention_masks, axis=-1) masked_embs = tf.reduce_sum(masked_embs, axis=1) / tf.cast(sample_length, tf.float32) a = tf.math.l2_normalize(masked_embs[:q_len, :], axis=1) b = tf.math.l2_normalize(masked_embs[q_len:, :], axis=1) similarities = tf.matmul(a, b, transpose_b=True) scores = tf.nn.softmax(similarities) results = list(zip(answers, scores.numpy().squeeze().tolist())) sorted_results = sorted(results, key=lambda x: x[1], reverse=True) sorted_results = [{"answer": answer.replace("", ""), "score": f"{score:.4f}"} for answer, score in sorted_results] return sorted_results for question in questions: results = answer_faq(model, tokenizer, [question], answers) print(question.replace("", "")) print(results) print("---------------------") ">
questions = [
    "Merhaba",
    "Nasılsın?",
    "Bireysel araç kiralama yapıyor musunuz?",
    "Kurumsal araç kiralama yapıyor musunuz?"
]

answers = [
    "Merhaba, size nasıl yardımcı olabilirim?",
    "İyiyim, teşekkür ederim. Size nasıl yardımcı olabilirim?",
    "Hayır, sadece Kurumsal Araç Kiralama operasyonları gerçekleştiriyoruz. Size başka nasıl yardımcı olabilirim?",
    "Evet, kurumsal araç kiralama hizmetleri sağlıyoruz. Size nasıl yardımcı olabilirim?"
]


questions = ["" + q for q in questions]
answers = ["" + a for a in answers]


def answer_faq(model, tokenizer, questions, answers, return_similarities=False):
    q_len = len(questions)
    tokens = tokenizer(questions + answers, padding=True, return_tensors='tf')
    embs = model(**tokens)[0]

    attention_masks = tf.cast(tokens['attention_mask'], tf.float32)
    sample_length = tf.reduce_sum(attention_masks, axis=-1, keepdims=True)
    masked_embs = embs * tf.expand_dims(attention_masks, axis=-1)
    masked_embs = tf.reduce_sum(masked_embs, axis=1) / tf.cast(sample_length, tf.float32)
    a = tf.math.l2_normalize(masked_embs[:q_len, :], axis=1)
    b = tf.math.l2_normalize(masked_embs[q_len:, :], axis=1)

    similarities = tf.matmul(a, b, transpose_b=True)
        
    scores = tf.nn.softmax(similarities)
    results = list(zip(answers, scores.numpy().squeeze().tolist()))
    sorted_results = sorted(results, key=lambda x: x[1], reverse=True)
    sorted_results = [{"answer": answer.replace("", ""), "score": f"{score:.4f}"} for answer, score in sorted_results]
    return sorted_results


for question in questions:
    results = answer_faq(model, tokenizer, [question], answers)
    print(question.replace("", ""))
    print(results)
    print("---------------------")

And the output is:

Merhaba
[{'answer': 'Merhaba, size nasıl yardımcı olabilirim?', 'score': '0.2931'}, {'answer': 'İyiyim, teşekkür ederim. Size nasıl yardımcı olabilirim?', 'score': '0.2751'}, {'answer': 'Hayır, sadece Kurumsal Araç Kiralama operasyonları gerçekleştiriyoruz. Size başka nasıl yardımcı olabilirim?', 'score': '0.2200'}, {'answer': 'Evet, kurumsal araç kiralama hizmetleri sağlıyoruz. Size nasıl yardımcı olabilirim?', 'score': '0.2118'}]
---------------------
Nasılsın?
[{'answer': 'İyiyim, teşekkür ederim. Size nasıl yardımcı olabilirim?', 'score': '0.2808'}, {'answer': 'Merhaba, size nasıl yardımcı olabilirim?', 'score': '0.2623'}, {'answer': 'Hayır, sadece Kurumsal Araç Kiralama operasyonları gerçekleştiriyoruz. Size başka nasıl yardımcı olabilirim?', 'score': '0.2320'}, {'answer': 'Evet, kurumsal araç kiralama hizmetleri sağlıyoruz. Size nasıl yardımcı olabilirim?', 'score': '0.2249'}]
---------------------
Bireysel araç kiralama yapıyor musunuz?
[{'answer': 'Hayır, sadece Kurumsal Araç Kiralama operasyonları gerçekleştiriyoruz. Size başka nasıl yardımcı olabilirim?', 'score': '0.2861'}, {'answer': 'Evet, kurumsal araç kiralama hizmetleri sağlıyoruz. Size nasıl yardımcı olabilirim?', 'score': '0.2768'}, {'answer': 'İyiyim, teşekkür ederim. Size nasıl yardımcı olabilirim?', 'score': '0.2215'}, {'answer': 'Merhaba, size nasıl yardımcı olabilirim?', 'score': '0.2156'}]
---------------------
Kurumsal araç kiralama yapıyor musunuz?
[{'answer': 'Evet, kurumsal araç kiralama hizmetleri sağlıyoruz. Size nasıl yardımcı olabilirim?', 'score': '0.3060'}, {'answer': 'Hayır, sadece Kurumsal Araç Kiralama operasyonları gerçekleştiriyoruz. Size başka nasıl yardımcı olabilirim?', 'score': '0.2929'}, {'answer': 'İyiyim, teşekkür ederim. Size nasıl yardımcı olabilirim?', 'score': '0.2066'}, {'answer': 'Merhaba, size nasıl yardımcı olabilirim?', 'score': '0.1945'}]
---------------------
Owner
M. Yusuf Sarıgöz
AI research engineer and Google Developer Expert on Machine Learning. Open to new opportunities.
M. Yusuf Sarıgöz
Voice Assistant inspired by Google Assistant, Cortana, Alexa, Siri, ...

author: @shival_gupta VoiceAI This program is an example of a simple virtual assitant It will listen to you and do accordingly It will begin with wish

Shival Gupta 1 Jan 06, 2022
An easy to use, user-friendly and efficient code for extracting OpenAI CLIP (Global/Grid) features from image and text respectively.

Extracting OpenAI CLIP (Global/Grid) Features from Image and Text This repo aims at providing an easy to use and efficient code for extracting image &

Jianjie(JJ) Luo 13 Jan 06, 2023
pkuseg多领域中文分词工具; The pkuseg toolkit for multi-domain Chinese word segmentation

pkuseg:一个多领域中文分词工具包 (English Version) pkuseg 是基于论文[Luo et. al, 2019]的工具包。其简单易用,支持细分领域分词,有效提升了分词准确度。 目录 主要亮点 编译和安装 各类分词工具包的性能对比 使用方式 论文引用 作者 常见问题及解答 主要

LancoPKU 6k Dec 29, 2022
The code from the whylogs workshop in DataTalks.Club on 29 March 2022

whylogs Workshop The code from the whylogs workshop in DataTalks.Club on 29 March 2022 whylogs - The open source standard for data logging (Don't forg

DataTalksClub 12 Sep 05, 2022
天池中药说明书实体识别挑战冠军方案;中文命名实体识别;NER; BERT-CRF & BERT-SPAN & BERT-MRC;Pytorch

天池中药说明书实体识别挑战冠军方案;中文命名实体识别;NER; BERT-CRF & BERT-SPAN & BERT-MRC;Pytorch

zxx飞翔的鱼 751 Dec 30, 2022
Twitter-Sentiment-Analysis - Analysis of twitter posts' positive and negative score.

Twitter-Sentiment-Analysis The hands-on project is in Python 3 Programming class offered by University of Michigan via Coursera. The task is to build

Eszter Pai 1 Jan 03, 2022
Crowd sourced training data for Rasa NLU models

NLU Training Data Crowd-sourced training data for the development and testing of Rasa NLU models. If you're interested in grabbing some data feel free

Rasa 169 Dec 26, 2022
To be a next-generation DL-based phenotype prediction from genome mutations.

Sequence -----------+-- 3D_structure -- 3D_module --+ +-- ? | |

Eric Alcaide 18 Jan 11, 2022
Applied Natural Language Processing in the Enterprise - An O'Reilly Media Publication

Applied Natural Language Processing in the Enterprise This is the companion repo for Applied Natural Language Processing in the Enterprise, an O'Reill

Applied Natural Language Processing in the Enterprise 95 Jan 05, 2023
Graph4nlp is the library for the easy use of Graph Neural Networks for NLP

Graph4NLP Graph4NLP is an easy-to-use library for R&D at the intersection of Deep Learning on Graphs and Natural Language Processing (i.e., DLG4NLP).

Graph4AI 1.5k Dec 23, 2022
Tools, wrappers, etc... for data science with a concentration on text processing

Rosetta Tools for data science with a focus on text processing. Focuses on "medium data", i.e. data too big to fit into memory but too small to necess

207 Nov 22, 2022
A telegram bot to translate 100+ Languages

🔥 GOOGLE TRANSLATER 🔥 The owner would not be responsible for any kind of bans due to the bot. • ⚡ INSTALLING ⚡ • • 🔰 Deploy To Railway 🔰 • • ✅ OFF

Aɴᴋɪᴛ Kᴜᴍᴀʀ 5 Dec 20, 2021
Ray-based parallel data preprocessing for NLP and ML.

Wrangl Ray-based parallel data preprocessing for NLP and ML. pip install wrangl # for latest pip install git+https://github.com/vzhong/wrangl See exa

Victor Zhong 33 Dec 27, 2022
:P Some basic stuff I'm gonna use for my upcoming Agile Software Development and Devops

reverse-image-search-py bash script.sh img_name.jpg Requirements pip install requests pip install pyshorteners Dry run [ Sudhanva M 3 Dec 18, 2021

This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
Open source code for AlphaFold.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

DeepMind 9.7k Jan 02, 2023
keras implement of transformers for humans

keras implement of transformers for humans

苏剑林(Jianlin Su) 4.8k Jan 03, 2023
Text Analysis & Topic Extraction on Android App user reviews

AndroidApp_TextAnalysis Hi, there! This is code archive for Text Analysis and Topic Extraction from user_reviews of Android App. Dataset Source : http

Fitrie Ratnasari 1 Feb 14, 2022
State of the art faster Natural Language Processing in Tensorflow 2.0 .

tf-transformers: faster and easier state-of-the-art NLP in TensorFlow 2.0 ****************************************************************************

74 Dec 05, 2022
Translates basic English sentences into the Huna language (hoo-NAH)

huna-translator The Huna Language Translates basic English sentences into the Huna language (hoo-NAH). The Huna constructed language was developed in

Miles Smith 0 Jan 20, 2022