Question and answer retrieval in Turkish with BERT

Overview

trfaq

Google supported this work by providing Google Cloud credit. Thank you Google for supporting the open source! 🎉

What is this?

At this repo, I'm releasing the training script and a full working inference example for my model mys/bert-base-turkish-cased-nli-mean-faq-mnr published on HuggingFace. Please note that the training code at finetune_tf.py is a simplified version of the original, which is intended for educational purposes and not optimized for anything. However, it contains an implementation of the Multiple Negatives Symmetric Ranking loss, and you can use it in your own work. Additionally, I cleaned and filtered the Turkish subset of the clips/mqa dataset, as it contains lots of mis-encoded texts. You can download this cleaned dataset here.

Model

This is a finetuned version of mys/bert-base-turkish-cased-nli-mean for FAQ retrieval, which is itself a finetuned version of dbmdz/bert-base-turkish-cased for NLI. It maps questions & answers to 768 dimensional vectors to be used for FAQ-style chatbots and answer retrieval in question-answering pipelines. It was trained on the Turkish subset of clips/mqa dataset after some cleaning/ filtering and with a Multiple Negatives Symmetric Ranking loss. Before finetuning, I added two special tokens to the tokenizer (i.e., for questions and for answers) and resized the model embeddings, so you need to prepend the relevant tokens to the sequences before feeding them into the model. Please have a look at my accompanying repo to see how it was finetuned and how it can be used in inference. The following code snippet is an excerpt from the inference at the repo.

Usage

see inference.py for a full working example.

" + q for q in questions] answers = ["" + a for a in answers] def answer_faq(model, tokenizer, questions, answers, return_similarities=False): q_len = len(questions) tokens = tokenizer(questions + answers, padding=True, return_tensors='tf') embs = model(**tokens)[0] attention_masks = tf.cast(tokens['attention_mask'], tf.float32) sample_length = tf.reduce_sum(attention_masks, axis=-1, keepdims=True) masked_embs = embs * tf.expand_dims(attention_masks, axis=-1) masked_embs = tf.reduce_sum(masked_embs, axis=1) / tf.cast(sample_length, tf.float32) a = tf.math.l2_normalize(masked_embs[:q_len, :], axis=1) b = tf.math.l2_normalize(masked_embs[q_len:, :], axis=1) similarities = tf.matmul(a, b, transpose_b=True) scores = tf.nn.softmax(similarities) results = list(zip(answers, scores.numpy().squeeze().tolist())) sorted_results = sorted(results, key=lambda x: x[1], reverse=True) sorted_results = [{"answer": answer.replace("", ""), "score": f"{score:.4f}"} for answer, score in sorted_results] return sorted_results for question in questions: results = answer_faq(model, tokenizer, [question], answers) print(question.replace("", "")) print(results) print("---------------------") ">
questions = [
    "Merhaba",
    "Nasılsın?",
    "Bireysel araç kiralama yapıyor musunuz?",
    "Kurumsal araç kiralama yapıyor musunuz?"
]

answers = [
    "Merhaba, size nasıl yardımcı olabilirim?",
    "İyiyim, teşekkür ederim. Size nasıl yardımcı olabilirim?",
    "Hayır, sadece Kurumsal Araç Kiralama operasyonları gerçekleştiriyoruz. Size başka nasıl yardımcı olabilirim?",
    "Evet, kurumsal araç kiralama hizmetleri sağlıyoruz. Size nasıl yardımcı olabilirim?"
]


questions = ["" + q for q in questions]
answers = ["" + a for a in answers]


def answer_faq(model, tokenizer, questions, answers, return_similarities=False):
    q_len = len(questions)
    tokens = tokenizer(questions + answers, padding=True, return_tensors='tf')
    embs = model(**tokens)[0]

    attention_masks = tf.cast(tokens['attention_mask'], tf.float32)
    sample_length = tf.reduce_sum(attention_masks, axis=-1, keepdims=True)
    masked_embs = embs * tf.expand_dims(attention_masks, axis=-1)
    masked_embs = tf.reduce_sum(masked_embs, axis=1) / tf.cast(sample_length, tf.float32)
    a = tf.math.l2_normalize(masked_embs[:q_len, :], axis=1)
    b = tf.math.l2_normalize(masked_embs[q_len:, :], axis=1)

    similarities = tf.matmul(a, b, transpose_b=True)
        
    scores = tf.nn.softmax(similarities)
    results = list(zip(answers, scores.numpy().squeeze().tolist()))
    sorted_results = sorted(results, key=lambda x: x[1], reverse=True)
    sorted_results = [{"answer": answer.replace("", ""), "score": f"{score:.4f}"} for answer, score in sorted_results]
    return sorted_results


for question in questions:
    results = answer_faq(model, tokenizer, [question], answers)
    print(question.replace("", ""))
    print(results)
    print("---------------------")

And the output is:

Merhaba
[{'answer': 'Merhaba, size nasıl yardımcı olabilirim?', 'score': '0.2931'}, {'answer': 'İyiyim, teşekkür ederim. Size nasıl yardımcı olabilirim?', 'score': '0.2751'}, {'answer': 'Hayır, sadece Kurumsal Araç Kiralama operasyonları gerçekleştiriyoruz. Size başka nasıl yardımcı olabilirim?', 'score': '0.2200'}, {'answer': 'Evet, kurumsal araç kiralama hizmetleri sağlıyoruz. Size nasıl yardımcı olabilirim?', 'score': '0.2118'}]
---------------------
Nasılsın?
[{'answer': 'İyiyim, teşekkür ederim. Size nasıl yardımcı olabilirim?', 'score': '0.2808'}, {'answer': 'Merhaba, size nasıl yardımcı olabilirim?', 'score': '0.2623'}, {'answer': 'Hayır, sadece Kurumsal Araç Kiralama operasyonları gerçekleştiriyoruz. Size başka nasıl yardımcı olabilirim?', 'score': '0.2320'}, {'answer': 'Evet, kurumsal araç kiralama hizmetleri sağlıyoruz. Size nasıl yardımcı olabilirim?', 'score': '0.2249'}]
---------------------
Bireysel araç kiralama yapıyor musunuz?
[{'answer': 'Hayır, sadece Kurumsal Araç Kiralama operasyonları gerçekleştiriyoruz. Size başka nasıl yardımcı olabilirim?', 'score': '0.2861'}, {'answer': 'Evet, kurumsal araç kiralama hizmetleri sağlıyoruz. Size nasıl yardımcı olabilirim?', 'score': '0.2768'}, {'answer': 'İyiyim, teşekkür ederim. Size nasıl yardımcı olabilirim?', 'score': '0.2215'}, {'answer': 'Merhaba, size nasıl yardımcı olabilirim?', 'score': '0.2156'}]
---------------------
Kurumsal araç kiralama yapıyor musunuz?
[{'answer': 'Evet, kurumsal araç kiralama hizmetleri sağlıyoruz. Size nasıl yardımcı olabilirim?', 'score': '0.3060'}, {'answer': 'Hayır, sadece Kurumsal Araç Kiralama operasyonları gerçekleştiriyoruz. Size başka nasıl yardımcı olabilirim?', 'score': '0.2929'}, {'answer': 'İyiyim, teşekkür ederim. Size nasıl yardımcı olabilirim?', 'score': '0.2066'}, {'answer': 'Merhaba, size nasıl yardımcı olabilirim?', 'score': '0.1945'}]
---------------------
Owner
M. Yusuf Sarıgöz
AI research engineer and Google Developer Expert on Machine Learning. Open to new opportunities.
M. Yusuf Sarıgöz
Named Entity Recognition API used by TEI Publisher

TEI Publisher Named Entity Recognition API This repository contains the API used by TEI Publisher's web-annotation editor to detect entities in the in

e-editiones.org 14 Nov 15, 2022
To be a next-generation DL-based phenotype prediction from genome mutations.

Sequence -----------+-- 3D_structure -- 3D_module --+ +-- ? | |

Eric Alcaide 18 Jan 11, 2022
Chinese segmentation library

What is loso? loso is a Chinese segmentation system written in Python. It was developed by Victor Lin ( Fang-Pen Lin 82 Jun 28, 2022

ACL22 paper: Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost

Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost LOVE is accpeted by ACL22 main conference as a long pape

Lihu Chen 32 Jan 03, 2023
Voice Assistant inspired by Google Assistant, Cortana, Alexa, Siri, ...

author: @shival_gupta VoiceAI This program is an example of a simple virtual assitant It will listen to you and do accordingly It will begin with wish

Shival Gupta 1 Jan 06, 2022
A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework.

Unpacker Karton Service A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework. This project is

c3rb3ru5 45 Jan 05, 2023
Text Analysis & Topic Extraction on Android App user reviews

AndroidApp_TextAnalysis Hi, there! This is code archive for Text Analysis and Topic Extraction from user_reviews of Android App. Dataset Source : http

Fitrie Ratnasari 1 Feb 14, 2022
本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。

【关于 NLP】那些你不知道的事 作者:杨夕、芙蕖、李玲、陈海顺、twilight、LeoLRH、JimmyDU、艾春辉、张永泰、金金金 介绍 本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。 目录架构 一、【

1.4k Dec 30, 2022
Topic Inference with Zeroshot models

zeroshot_topics Table of Contents Installation Usage License Installation zeroshot_topics is distributed on PyPI as a universal wheel and is available

Rita Anjana 55 Nov 28, 2022
NLP project that works with news (NER, context generation, news trend analytics)

СоАвтор СоАвтор – платформа и открытый набор инструментов для редакций и журналистов-фрилансеров, который призван сделать процесс создания контента ма

38 Jan 04, 2023
Random Directed Acyclic Graph Generator

DAG_Generator Random Directed Acyclic Graph Generator verison1.0 简介 工作流通常由DAG(有向无环图)来定义,其中每个计算任务$T_i$由一个顶点(node,task,vertex)表示。同时,任务之间的每个数据或控制依赖性由一条加权

Livion 17 Dec 27, 2022
Learning to Rewrite for Non-Autoregressive Neural Machine Translation

RewriteNAT This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressiv

Xinwei Geng 20 Dec 25, 2022
Python library to make development of portfolio analysis faster and easier

Trafalgar Python library to make development of portfolio analysis faster and easier Installation 🔥 For the moment, Trafalgar is still in beta develo

Santosh Passoubady 641 Jan 01, 2023
Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Yoon Kim 43 Dec 23, 2022
OpenChat: Opensource chatting framework for generative models

OpenChat is opensource chatting framework for generative models.

Hyunwoong Ko 427 Jan 06, 2023
The ibet-Prime security token management system for ibet network.

ibet-Prime The ibet-Prime security token management system for ibet network. Features ibet-Prime is an API service that enables the issuance and manag

BOOSTRY 8 Dec 22, 2022
ProtFeat is protein feature extraction tool that utilizes POSSUM and iFeature.

Description: ProtFeat is designed to extract the protein features by employing POSSUM and iFeature python-based tools. ProtFeat includes a total of 39

GOKHAN OZSARI 5 Dec 16, 2022
Persian-lexicon - A lexicon of 70K unique Persian (Farsi) words

Persian Lexicon This repo uses Uppsala Persian Corpus (UPC) to construct a lexic

Saman Vaisipour 7 Apr 01, 2022
A Fast Command Analyser based on Dict and Pydantic

Alconna Alconna 隶属于ArcletProject, 在Cesloi内有内置 Alconna 是 Cesloi-CommandAnalysis 的高级版,支持解析消息链 一般情况下请当作简易的消息链解析器/命令解析器 文档 暂时的文档 Example from arclet.alcon

19 Jan 03, 2023
Entity Disambiguation as text extraction (ACL 2022)

ExtEnD: Extractive Entity Disambiguation This repository contains the code of ExtEnD: Extractive Entity Disambiguation, a novel approach to Entity Dis

Sapienza NLP group 121 Jan 03, 2023