Nateve compiler developed with python.

Overview

Adam

Adam is a Nateve Programming Language compiler developed using Python.

Nateve

Nateve is a new general domain programming language open source inspired by languages like Python, C++, JavaScript, and Wolfram Mathematica.

Nateve is an compiled language. Its first compiler, Adam, is fully built using Python 3.8.

Options of command line (Nateve)

  1. build: Transpile Nateve source code to Python 3.8
  2. run: Run Nateve source code
  3. compile: Compile Nateve source code to an executable file (.exe)
  4. run-init-loop: Run Nateve source code with an initial source and a loop source
  5. set-time-unit: Set Adam time unit to seconds or miliseconds (default: milisecond)
  6. -v: Activate verbose mode

Nateve Tutorial

In this tutorial, we will learn how to use Nateve step by step.

Step 1: Create a new Nateve project

$ cd my-project
$ COPY CON main.nateve

Hello World program

print("Hello, World!")

Is prime? program

def is_prime(n) {
    if n == 1 {
        return False
    }
    for i in range(2, n) {
        if n % i == 0 {
            return False
        }
    }
    return True
}

n = intput("Enter a number: ")

if is_prime(n) {
    print("It is a prime number.")
}
else {
    print("It is not a prime number.")
}

Comments

If you want to comment your code, you can use:

~ This is a single line comment ~

~
    And this a multiline comment
~

Under construction...

Let Statements

This language does not use variables. Instead of variables, you can only declare static values.

For declaring a value, you must use let and give it a value. For example:

let a = 1        -- Interger
let b = 1.0      -- Float
let c = "string" -- String
let d = true     -- Boolean
let e = [1,2,3]  -- List
let f = (1,2)    -- Tuple
...             

SigmaF allows data type as Integer, Float, Boolean, and String.

Lists

The Lists allow to use all the data types before mentioned, as well as lists and functions.

Also, they allow to get an item through the next notation:

let value_list = [1,2,3,4,5,6,7,8,9]
value_list[0]       -- Output: 1
value_list[0, 4]    -- Output: [1,2,3,4]
value_list[0, 8, 2] -- Output: [1, 3, 5, 7]

The struct of List CAll is example_list[<Start>, <End>, <Jump>]

Tuples

The tuples are data structs of length greater than 1. Unlike lists, they allow the following operations:

(1,2) + (3,4)      -- Output: (4,6)
(4,6,8) - (3,4,5)  -- Output: (1,2,3)
(0,1) == (0,1)     -- Output: true
(0,1) != (1,3)     -- Output: true

To obtain the values of a tuple, you must use the same notation of the list. But this data structure does not allow ranges like the lists (only you can get one position of a tuple).

E.g.

let t = (1,2,3,4,5,6)
t[1] -- Output: 2
t[5] -- Output: 6

And so on.

Operators

Warning: SigmaF have Static Typing, so it does not allow the operation between different data types.

These are operators:

Operator Symbol
Plus +
Minus -
Multiplication *
Division /
Modulus %
Exponential **
Equal ==
Not Equal !=
Less than <
Greater than >
Less or equal than <=
Greater or equal than >=
And &&
Or ||

The operator of negation for Boolean was not included. You can use the not() function in order to do this.

Functions

For declaring a function, you have to use the next syntax:

let example_function = fn <Name Argument>::<Argument Type> -> <Output Type> {
    => <Return Value>
}  

(For return, you have to use the => symbol)

For example:

let is_prime_number = fn x::int, i::int -> bool {
    if x <= 1 then {=> false;}
    if x == i then {=> true;}
    if (x % i) == 0 then {=> false;}
    => is_prime_number(x, i+1);
}

printLn(is_prime_number(11, 2)) -- Output: true

Conditionals

Regarding the conditionals, the syntax structure is:

if <Condition> then {
    <Consequence>
}
else{
    <Other Consequence>
}

For example:

if x <= 1 || x % i == 0 then {
    false;
}
if x == i then {
    true;
}
else {
    false;
}

Some Examples

-- Quick Sort
let qsort = fn l::list -> list {

	if (l == []) then {=> [];}
	else {
		let p = l[0];
		let xs = tail(l);
		
		let c_lesser = fn q::int -> bool {=> (q < p)}
		let c_greater = fn q::int -> bool {=> (q >= p)}

		=> qsort(filter(c_lesser, xs)) + [p] + qsort(filter(c_greater, xs));
	}
}

-- Filter
let filter = fn c::function, l::list -> list {
	if (l == []) then {=> [];} 

    => if (c(l[0])) then {[l[0]]} else {[]} +  filter(c, tail(l));
}

-- Map
let map = fn f::function, l::list -> list {
	if (l==[]) then {=> [];}
	
	=> [f(l[0])] + map(f, tail(l));
}

To know other examples of the implementations, you can go to e.g.


Feedback

I would really appreciatte your feedback. You can submit a new issue, or reach out me on Twitter.

Contribute

This is an opensource project, everyone can contribute and become a member of the community of SigmaF.

Why be a member of the SigmaF community?

1. A simple and understandable code

The source code of the interpreter is made with Python 3.8, a language easy to learn, also good practices are a priority for this project.

2. A great potencial

This project has a great potential to be the next programming language of the functional paradigm, to development the AI, and to development new metaheuristics.

3. Scalable development

One of the mains approaches of this project is the implementation of TDD from the beggining and the development of new features, which allows scalability.

4. Simple and power

One of the main purposes of this programming language is to create an easy-to-learn functional language, which at the same time is capable of processing large amounts of data safely and allows concurrence and parallelism.

5. Respect for diversity

Everybody is welcome, it does not matter your genre, experience or nationality. Anyone with enthusiasm can be part of this project. Anyone from the most expert to the that is beginning to learn about programming, marketing, design, or any career.

How to start contributing?

There are multiply ways to contribute, since sharing this project, improving the brand of SigmaF, helping to solve the bugs or developing new features and making improves to the source code.

  • Share this project: You can put your star in the repository, or talk about this project. You can use the hashtag #SigmaF in Twitter, LinkedIn or any social network too.

  • Improve the brand of SigmaF: If you are a marketer, designer or writer, and you want to help, you are welcome. You can contact me on Twitter like @fabianmativeal if you are interested on doing it.

  • Help to solve the bugs: if you find one bug notify me an issue. On this we can all improve this language.

  • Developing new features: If you want to develop new features or making improvements to the project, you can do a fork to the dev branch (here are the ultimate develops) working there, and later do a pull request to dev branch in order to update SigmaF.

You might also like...
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

A python framework to transform natural language questions to queries in a database query language.

__ _ _ _ ___ _ __ _ _ / _` | | | |/ _ \ '_ \| | | | | (_| | |_| | __/ |_) | |_| | \__, |\__,_|\___| .__/ \__, | |_| |_| |___/

Python library for processing Chinese text

SnowNLP: Simplified Chinese Text Processing SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob

A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:
A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:

A Python package implementing a new model for text classification with visualization tools for Explainable AI 🍣 Online live demos: http://tworld.io/s

Python bindings to the dutch NLP tool Frog (pos tagger, lemmatiser, NER tagger, morphological analysis, shallow parser, dependency parser)

Frog for Python This is a Python binding to the Natural Language Processing suite Frog. Frog is intended for Dutch and performs part-of-speech tagging

A python wrapper around the ZPar parser for English.

NOTE This project is no longer under active development since there are now really nice pure Python parsers such as Stanza and Spacy. The repository w

💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

Python interface for converting Penn Treebank trees to Stanford Dependencies and Universal Depenencies

PyStanfordDependencies Python interface for converting Penn Treebank trees to Universal Dependencies and Stanford Dependencies. Example usage Start by

Comments
  • [Enhancement] Nateve Vectors don't allow non-numeric datatypes

    [Enhancement] Nateve Vectors don't allow non-numeric datatypes

    Vectors just allow to use numbers (int/float) into them, because Vectors are redifinening Python Built-in lists in the middle code generation process. A possible solution is to join Vectors and Matrices into a Linear datatypes with the syntax opener tag "$", and the to make independent the python lists

    opened by eanorambuena 0
  • [Bug] Double execution of the modules in assembling process

    [Bug] Double execution of the modules in assembling process

    We need to resolve the double execution of the modules in assembling process.

    The last Non Double Execution Patch has been deprecated because it did generate bugs of type: - Code segmentation in the driver_file

    bug help wanted 
    opened by eanorambuena 0
Releases(0.0.3)
Owner
Nateve
Repositories related to the Nateve Programming Language
Nateve
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model

Kiran R 399 Jan 05, 2023
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

🤗 Contributing to OpenSpeech 🤗 OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform ta

Openspeech TEAM 513 Jan 03, 2023
Korean extractive summarization. 2021 AI 텍스트 요약 온라인 해커톤 화성갈끄니까팀 코드

korean extractive summarization 2021 AI 텍스트 요약 온라인 해커톤 화성갈끄니까팀 코드 Leaderboard Notice Text Summarization with Pretrained Encoders에 나오는 bertsumext모델(ext

3 Aug 10, 2022
189 Jan 02, 2023
Named-entity recognition using neural networks. Easy-to-use and state-of-the-art results.

NeuroNER NeuroNER is a program that performs named-entity recognition (NER). Website: neuroner.com. This page gives step-by-step instructions to insta

Franck Dernoncourt 1.6k Dec 27, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
A simple word search made in python

Word Search Puzzle A simple word search made in python Usage $ python3 main.py -h usage: main.py [-h] [-c] [-f FILE] Generates a word s

Magoninho 16 Mar 10, 2022
PyTorch implementation of NATSpeech: A Non-Autoregressive Text-to-Speech Framework

A Non-Autoregressive Text-to-Speech (NAR-TTS) framework, including official PyTorch implementation of PortaSpeech (NeurIPS 2021) and DiffSpeech (AAAI 2022)

760 Jan 03, 2023
Python3 to Crystal Translation using Python AST Walker

py2cr.py A code translator using AST from Python to Crystal. This is basically a NodeVisitor with Crystal output. See AST documentation (https://docs.

66 Jul 25, 2022
Python package for performing Entity and Text Matching using Deep Learning.

DeepMatcher DeepMatcher is a Python package for performing entity and text matching using deep learning. It provides built-in neural networks and util

461 Dec 28, 2022
[WWW 2021 GLB] New Benchmarks for Learning on Non-Homophilous Graphs

New Benchmarks for Learning on Non-Homophilous Graphs Here are the codes and datasets accompanying the paper: New Benchmarks for Learning on Non-Homop

94 Dec 21, 2022
Minimal GUI for accessing the Watson Text to Speech service.

Description Minimal graphical application for accessing the Watson Text to Speech service. Requirements Python 3 plus all dependencies listed in requi

Moritz Maxeiner 1 Oct 22, 2021
Code for the paper "Flexible Generation of Natural Language Deductions"

Code for the paper "Flexible Generation of Natural Language Deductions"

Kaj Bostrom 12 Nov 11, 2022
Deep Learning Topics with Computer Vision & NLP

Deep learning Udacity Course Deep Learning Topics with Computer Vision & NLP for the AWS Machine Learning Engineer Nanodegree Program Tasks are mostly

Simona Mircheva 1 Jan 20, 2022
Partially offline multi-language translator built upon Huggingface transformers.

Translate Command-line interface to translation pipelines, powered by Huggingface transformers. This tool can download translation models, and then us

Richard Jarry 8 Oct 25, 2022
Natural language computational chemistry command line interface.

nlcc Install pip install nlcc Must have Open-AI Codex key: export OPENAI_API_KEY=your key here then nlcc key bindings ctrl-w copy to clipboard (Note

Andrew White 37 Dec 14, 2022
Transformation spoken text to written text

Transformation spoken text to written text This model is used for formatting raw asr text output from spoken text to written text (Eg. date, number, i

Nguyen Binh 16 Dec 28, 2022
An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI, torch2trt to accelerate. our model support for int8, dynamic input and profiling. (Nvidia-Alibaba-TensoRT-hackathon2021)

Ultra_Fast_Lane_Detection_TensorRT An ultra fast tiny model for lane detection, using onnx_parser, TensorRTAPI to accelerate. our model support for in

steven.yan 121 Dec 27, 2022
Extract Keywords from sentence or Replace keywords in sentences.

FlashText This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the FlashText algorithm. Install

Vikash Singh 5.3k Jan 01, 2023