LUKE -- Language Understanding with Knowledge-based Embeddings

Related tags

Text Data & NLPluke
Overview

LUKE

CircleCI


LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transformer. It was proposed in our paper LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention. It achieves state-of-the-art results on important NLP benchmarks including SQuAD v1.1 (extractive question answering), CoNLL-2003 (named entity recognition), ReCoRD (cloze-style question answering), TACRED (relation classification), and Open Entity (entity typing).

This repository contains the source code to pre-train the model and fine-tune it to solve downstream tasks.

News

November 24, 2021: Entity disambiguation example is available

The example code of entity disambiguation based on LUKE has been added to this repository. This model was originally proposed in our paper, and achieved state-of-the-art results on five standard entity disambiguation datasets: AIDA-CoNLL, MSNBC, AQUAINT, ACE2004, and WNED-WIKI.

For further details, please refer to the example directory.

August 3, 2021: New example code based on Hugging Face Transformers and AllenNLP is available

New fine-tuning examples of three downstream tasks, i.e., NER, relation classification, and entity typing, have been added to LUKE. These examples are developed based on Hugging Face Transformers and AllenNLP. The fine-tuning models are defined using simple AllenNLP's Jsonnet config files!

The example code is available in the examples_allennlp directory.

May 5, 2021: LUKE is added to Hugging Face Transformers

LUKE has been added to the master branch of the Hugging Face Transformers library. You can now solve entity-related tasks (e.g., named entity recognition, relation classification, entity typing) easily using this library.

For example, the LUKE-large model fine-tuned on the TACRED dataset can be used as follows:

>>> from transformers import LukeTokenizer, LukeForEntityPairClassification
>>> model = LukeForEntityPairClassification.from_pretrained("studio-ousia/luke-large-finetuned-tacred")
>>> tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-tacred")
>>> text = "Beyoncé lives in Los Angeles."
>>> entity_spans = [(0, 7), (17, 28)]  # character-based entity spans corresponding to "Beyoncé" and "Los Angeles"
>>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> predicted_class_idx = int(logits[0].argmax())
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
Predicted class: per:cities_of_residence

We also provide the following three Colab notebooks that show how to reproduce our experimental results on CoNLL-2003, TACRED, and Open Entity datasets using the library:

Please refer to the official documentation for further details.

November 5, 2021: LUKE-500K (base) model

We released LUKE-500K (base), a new pretrained LUKE model which is smaller than existing LUKE-500K (large). The experimental results of the LUKE-500K (base) and LUKE-500K (large) on SQuAD v1 and CoNLL-2003 are shown as follows:

Task Dataset Metric LUKE-500K (base) LUKE-500K (large)
Extractive Question Answering SQuAD v1.1 EM/F1 86.1/92.3 90.2/95.4
Named Entity Recognition CoNLL-2003 F1 93.3 94.3

We tuned only the batch size and learning rate in the experiments based on LUKE-500K (base).

Comparison with State-of-the-Art

LUKE outperforms the previous state-of-the-art methods on five important NLP tasks:

Task Dataset Metric LUKE-500K (large) Previous SOTA
Extractive Question Answering SQuAD v1.1 EM/F1 90.2/95.4 89.9/95.1 (Yang et al., 2019)
Named Entity Recognition CoNLL-2003 F1 94.3 93.5 (Baevski et al., 2019)
Cloze-style Question Answering ReCoRD EM/F1 90.6/91.2 83.1/83.7 (Li et al., 2019)
Relation Classification TACRED F1 72.7 72.0 (Wang et al. , 2020)
Fine-grained Entity Typing Open Entity F1 78.2 77.6 (Wang et al. , 2020)

These numbers are reported in our EMNLP 2020 paper.

Installation

LUKE can be installed using Poetry:

$ poetry install

The virtual environment automatically created by Poetry can be activated by poetry shell.

Released Models

We initially release the pre-trained model with 500K entity vocabulary based on the roberta.large model.

Name Base Model Entity Vocab Size Params Download
LUKE-500K (base) roberta.base 500K 253 M Link
LUKE-500K (large) roberta.large 500K 483 M Link

Reproducing Experimental Results

The experiments were conducted using Python3.6 and PyTorch 1.2.0 installed on a server with a single or eight NVidia V100 GPUs. We used NVidia's PyTorch Docker container 19.02. For computational efficiency, we used mixed precision training based on APEX library which can be installed as follows:

$ git clone https://github.com/NVIDIA/apex.git
$ cd apex
$ git checkout c3fad1ad120b23055f6630da0b029c8b626db78f
$ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" .

The APEX library is not needed if you do not use --fp16 option or reproduce the results based on the trained checkpoint files.

The commands that reproduce the experimental results are provided as follows:

Entity Typing on Open Entity Dataset

Dataset: Link
Checkpoint file (compressed): Link

Using the checkpoint file:

$ python -m examples.cli \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    entity-typing run \
    --data-dir=<DATA_DIR> \
    --checkpoint-file=<CHECKPOINT_FILE> \
    --no-train

Fine-tuning the model:

$ python -m examples.cli \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    entity-typing run \
    --data-dir=<DATA_DIR> \
    --train-batch-size=2 \
    --gradient-accumulation-steps=2 \
    --learning-rate=1e-5 \
    --num-train-epochs=3 \
    --fp16

Relation Classification on TACRED Dataset

Dataset: Link
Checkpoint file (compressed): Link

Using the checkpoint file:

$ python -m examples.cli \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    relation-classification run \
    --data-dir=<DATA_DIR> \
    --checkpoint-file=<CHECKPOINT_FILE> \
    --no-train

Fine-tuning the model:

$ python -m examples.cli \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    relation-classification run \
    --data-dir=<DATA_DIR> \
    --train-batch-size=4 \
    --gradient-accumulation-steps=8 \
    --learning-rate=1e-5 \
    --num-train-epochs=5 \
    --fp16

Named Entity Recognition on CoNLL-2003 Dataset

Dataset: Link
Checkpoint file (compressed): Link

Using the checkpoint file:

$ python -m examples.cli \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    ner run \
    --data-dir=<DATA_DIR> \
    --checkpoint-file=<CHECKPOINT_FILE> \
    --no-train

Fine-tuning the model:

$ python -m examples.cli\
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    ner run \
    --data-dir=<DATA_DIR> \
    --train-batch-size=2 \
    --gradient-accumulation-steps=4 \
    --learning-rate=1e-5 \
    --num-train-epochs=5 \
    --fp16

Cloze-style Question Answering on ReCoRD Dataset

Dataset: Link
Checkpoint file (compressed): Link

Using the checkpoint file:

$ python -m examples.cli \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    entity-span-qa run \
    --data-dir=<DATA_DIR> \
    --checkpoint-file=<CHECKPOINT_FILE> \
    --no-train

Fine-tuning the model:

$ python -m examples.cli \
    --num-gpus=8 \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    entity-span-qa run \
    --data-dir=<DATA_DIR> \
    --train-batch-size=1 \
    --gradient-accumulation-steps=4 \
    --learning-rate=1e-5 \
    --num-train-epochs=2 \
    --fp16

Extractive Question Answering on SQuAD 1.1 Dataset

Dataset: Link
Checkpoint file (compressed): Link
Wikipedia data files (compressed): Link

Using the checkpoint file:

$ python -m examples.cli \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    reading-comprehension run \
    --data-dir=<DATA_DIR> \
    --checkpoint-file=<CHECKPOINT_FILE> \
    --no-negative \
    --wiki-link-db-file=enwiki_20160305.pkl \
    --model-redirects-file=enwiki_20181220_redirects.pkl \
    --link-redirects-file=enwiki_20160305_redirects.pkl \
    --no-train

Fine-tuning the model:

$ python -m examples.cli \
    --num-gpus=8 \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    reading-comprehension run \
    --data-dir=<DATA_DIR> \
    --no-negative \
    --wiki-link-db-file=enwiki_20160305.pkl \
    --model-redirects-file=enwiki_20181220_redirects.pkl \
    --link-redirects-file=enwiki_20160305_redirects.pkl \
    --train-batch-size=2 \
    --gradient-accumulation-steps=3 \
    --learning-rate=15e-6 \
    --num-train-epochs=2 \
    --fp16

Citation

If you use LUKE in your work, please cite the original paper:

@inproceedings{yamada2020luke,
  title={LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention},
  author={Ikuya Yamada and Akari Asai and Hiroyuki Shindo and Hideaki Takeda and Yuji Matsumoto},
  booktitle={EMNLP},
  year={2020}
}

Contact Info

Please submit a GitHub issue or send an e-mail to Ikuya Yamada ([email protected]) for help or issues using LUKE.

Owner
Studio Ousia
Studio Ousia
A fast hierarchical dimensionality reduction algorithm.

h-NNE: Hierarchical Nearest Neighbor Embedding A fast hierarchical dimensionality reduction algorithm. h-NNE is a general purpose dimensionality reduc

Marios Koulakis 35 Dec 12, 2022
Example code for "Real-World Natural Language Processing"

Real-World Natural Language Processing This repository contains example code for the book "Real-World Natural Language Processing." AllenNLP (2.5.0 or

Masato Hagiwara 303 Dec 17, 2022
A Practitioner's Guide to Natural Language Processing

Learn how to process, classify, cluster, summarize, understand syntax, semantics and sentiment of text data with the power of Python! This repository contains code and datasets used in my book, Text

Dipanjan (DJ) Sarkar 1.5k Jan 03, 2023
This is Assignment1 code for the Web Data Processing System.

This is a Python program to Entity Linking by processing WARC files. We recognize entities from web pages and link them to a Knowledge Base(Wikidata).

3 Dec 04, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
Constituency Tree Labeling Tool

Constituency Tree Labeling Tool The purpose of this package is to solve the constituency tree labeling problem. Look from the dataset labeled by NLTK,

张宇 6 Dec 20, 2022
Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU

GPU Docker NLP Application Deployment Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU, to setup the enviroment on

Ritesh Yadav 9 Oct 14, 2022
A method for cleaning and classifying text using transformers.

NLP Translation and Classification The repository contains a method for classifying and cleaning text using NLP transformers. Overview The input data

Ray Chamidullin 0 Nov 15, 2022
Fine-tune GPT-3 with a Google Chat conversation history

Google Chat GPT-3 This repo will help you fine-tune GPT-3 with a Google Chat conversation history. The trained model will be able to converse as one o

Nate Baer 7 Dec 10, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

9 Jan 08, 2023
Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks. It takes raw videos/images + text as inputs, and outputs task predictions. ClipB

Jie Lei 雷杰 612 Jan 04, 2023
Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning

GenSen Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning Sandeep Subramanian, Adam Trischler, Yoshua B

Maluuba Inc. 309 Oct 19, 2022
Converts text into a PDF of handwritten notes

Text To Handwritten Notes Converts text into a PDF of handwritten notes Explore the docs » · Report Bug · Request Feature · Steps: $ git clone https:/

UVSinghK 63 Oct 09, 2022
A simple Speech Emotion Recognition (SER) API created using Flask and running in a Docker container.

keyword_searching Steps to use this Python scripts: (1)Paste this script into the file folder containing the PDF files you need to search from; (2)Thi

2 Nov 11, 2022
⛵️The official PyTorch implementation for "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing" (EMNLP 2020).

BERT-of-Theseus Code for paper "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing". BERT-of-Theseus is a new compressed BERT by progre

Kevin Canwen Xu 284 Nov 25, 2022
Code Implementation of "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE: Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction ***** New March 31th, 2022: Scikit-Style API for Easy Usage *****

Chia Yew Ken 111 Dec 23, 2022
To be a next-generation DL-based phenotype prediction from genome mutations.

Sequence -----------+-- 3D_structure -- 3D_module --+ +-- ? | |

Eric Alcaide 18 Jan 11, 2022
Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any language

Simple Python script to scrape youtube channles of "Parity Technologies and Web3 Foundation" and translate them to well-known braille language or any

Little Endian 1 Apr 28, 2022
Partially offline multi-language translator built upon Huggingface transformers.

Translate Command-line interface to translation pipelines, powered by Huggingface transformers. This tool can download translation models, and then us

Richard Jarry 8 Oct 25, 2022
nlp基础任务

NLP算法 说明 此算法仓库包括文本分类、序列标注、关系抽取、文本匹配、文本相似度匹配这五个主流NLP任务,涉及到22个相关的模型算法。 框架结构 文件结构 all_models ├── Base_line │   ├── __init__.py │   ├── base_data_process.

zuxinqi 23 Sep 22, 2022