Shared, streaming Python dict

Overview

UltraDict

Sychronized, streaming Python dictionary that uses shared memory as a backend

Warning: This is an early hack. There are only few unit tests and so on. Maybe not stable!

Features:

  • Fast (compared to other sharing solutions)
  • No running manager processes
  • Works in spawn and fork context
  • Safe locking between independent processes
  • Tested with Python >= v3.8 on Linux and Windows
  • Optional recursion for nested dicts

PyPI Package Run Python Tests

General Concept

UltraDict uses multiprocessing.shared_memory to synchronize a dict between multiple processes.

It does so by using a stream of updates in a shared memory buffer. This is efficient because only changes have to be serialized and transferred.

If the buffer is full, UltraDict will automatically do a full dump to a new shared memory space, reset the streaming buffer and continue to stream further updates. All users of the UltraDict will automatically load full dumps and continue using streaming updates afterwards.

Issues

On Windows, if no process has any handles on the shared memory, the OS will gc all of the shared memory making it inaccessible for future processes. To work around this issue you can currently set full_dump_size which will cause the creator of the dict to set a static full dump memory of the requested size. This full dump memory will live as long as the creator lives. This approach has the downside that you need to plan ahead for your data size and if it does not fit into the full dump memory, it will break.

Alternatives

There are many alternatives:

How to use?

Simple

In one Python REPL:

Python 3.9.2 on linux
>>> 
>>> from UltraDict import UltraDict
>>> ultra = UltraDict({ 1:1 }, some_key='some_value')
>>> ultra
{1: 1, 'some_key': 'some_value'}
>>>
>>> # We need the shared memory name in the other process.
>>> ultra.name
'psm_ad73da69'

In another Python REPL:

Python 3.9.2 on linux
>>> 
>>> from UltraDict import UltraDict
>>> # Connect to the shared memory with the name above
>>> other = UltraDict(name='psm_ad73da69')
>>> other
{1: 1, 'some_key': 'some_value'}
>>> other[2] = 2

Back in the first Python REPL:

>>> ultra[2]
2

Nested

In one Python REPL:

Python 3.9.2 on linux
>>> 
>>> from UltraDict import UltraDict
>>> ultra = UltraDict(recurse=True)
>>> ultra['nested'] = { 'counter': 0 }
>>> type(ultra['nested'])
<class 'UltraDict.UltraDict'>
>>> ultra.name
'psm_0a2713e4'

In another Python REPL:

Python 3.9.2 on linux
>>> 
>>> from UltraDict import UltraDict
>>> other = UltraDict(name='psm_0a2713e4')
>>> other['nested']['counter'] += 1

Back in the first Python REPL:

>>> ultra['nested']['counter']
1

Performance comparison

Python 3.9.2 on linux
>>> 
>>> from UltraDict import UltraDict
>>> ultra = UltraDict()
>>> for i in range(10_000): ultra[i] = i
... 
>>> len(ultra)
10000
>>> ultra[500]
500
>>> # Now let's do some performance testing
>>> import multiprocessing, timeit
>>> orig = dict(ultra)
>>> len(orig)
10000
>>> orig[500]
500
>>> managed = multiprocessing.Manager().dict(orig)
>>> len(managed)
10000

Read performance

>>> timeit.timeit('orig[1]', globals=globals())
0.03503723500762135
>>>
>>> timeit.timeit('ultra[1]', globals=globals())
0.380401570990216
>>>
>>> timeit.timeit('managed[1]', globals=globals())
15.848494678968564
>>>
>>> # We are factor 10 slower than a real, local dict,
>>> # but way faster than using a Manager
>>>
>>> # If you need full read performance, you can access the underlying
>>> # cache directly and get almost original dict performance,
>>> # of course at the cost of not having real-time updates anymore.
>>>
>>> timeit.timeit('ultra.data[1]', globals=globals())
0.047667117964010686

Write performance

>>> timeit.timeit('orig[1] = 1', globals=globals())
0.02869905502302572
>>>
>>> timeit.timeit('ultra[1] = 1', globals=globals())
2.259694856009446
>>>
>>> timeit.timeit('managed[1] = 1', globals=globals())
16.352361536002718
>>>
>>> # We are factor 100 slower than a real, local dict,
>>> # but still way faster than using a Manager

Parameters

Ultradict(*arg, name=None, buffer_size=10000, serializer=pickle, shared_lock=False, full_dump_size=None, auto_unlink=True, recurse=False, **kwargs)

name: Name of the shared memory. A random name will be chosen if not set. If a name is given a new shared memory space is created if it does not exist yet. Otherwise the existing shared memory space is attached.

buffer_size: Size of the shared memory buffer used for streaming changes of the dict.

The buffer size limits the biggest change that can be streamed, so when you use large values or deeply nested dicts you might need a bigger buffer. Otherwise, if the buffer is too small, it will fall back to a full dump. Creating full dumps can be slow, depending on the size of your dict.

Whenever the buffer is full, a full dump will be created. A new shared memory is allocated just big enough for the full dump. Afterwards the streaming buffer is reset. All other users of the dict will automatically load the full dump and continue streaming updates.

serializer: Use a different serialized from the default pickle, e. g. marshal, dill, json. The module or object provided must support the methods loads() and dumps()

shared_lock: When writing to the same dict at the same time from multiple, independent processes, they need a shared lock to synchronize and not overwrite each other's changes. Shared locks are slow. They rely on the atomics package for atomic locks. By default, UltraDict will use a multiprocessing.RLock() instead which works well in fork context and is much faster.

full_dump_size: If set, uses a static full dump memory instead of dynamically creating it. This might be necessary on Windows depending on your write behaviour. On Windows, the full dump memory goes away if the process goes away that had created the full dump. Thus you must plan ahead which processes might be writing to the dict and therefore creating full dumps.

auto_unlink: If True, the creator of the shared memory will automatically unlink the handle at exit so it is not visible or accessible to new processes. All existing, still connected processes can continue to use the dict.

recurse: If True, any nested dict objects will be automaticall wrapped in an UltraDict allowing transparent nested updates.

Advanced usage

See examples folder

>>> ultra = UltraDict({ 'init': 'some initial data' }, name='my-name', buffer_size=100_000)
>>> # Let's use a value with 100k bytes length.
>>> # This will not fit into our 100k bytes buffer due to the serialization overhead.
>>> ultra[0] = ' ' * 100_000
>>> ultra.print_status()
{'buffer': SharedMemory('my-name_memory', size=100000),
 'buffer_size': 100000,
 'control': SharedMemory('my-name', size=1000),
 'full_dump_counter': 1,
 'full_dump_counter_remote': 1,
 'full_dump_memory': SharedMemory('psm_765691cd', size=100057),
 'full_dump_memory_name_remote': 'psm_765691cd',
 'full_dump_size': None,
 'full_dump_static_size_remote': <memory at 0x7fcbf5ca6580>,
 'lock': <RLock(None, 0)>,
 'lock_pid_remote': 0,
 'lock_remote': 0,
 'name': 'my-name',
 'recurse': False,
 'recurse_remote': <memory at 0x7fcbf5ca6700>,
 'serializer': <module 'pickle' from '/usr/lib/python3.9/pickle.py'>,
 'shared_lock_remote': <memory at 0x7fcbf5ca6640>,
 'update_stream_position': 0,
 'update_stream_position_remote': 0}

Note: All status keys ending with _remote are stored in the control shared memory space and shared across processes.

Other things you can do:

>>> # Load latest full dump if one is available
>>> ultra.load()

>>> # Show statistics
>>> ultra.print_status()

>>> # Force load of latest full dump, even if we had already processed it.
>>> # There might also be streaming updates available after loading the full dump.
>>> ultra.load(force=True)

>>> # Apply full dump and stream updates to
>>> # underlying local dict, this is automatically
>>> # called by accessing the UltraDict in any usual way,
>>> # but can be useful to call after a forced load.
>>> ultra.apply_update()

>>> # Access underlying local dict directly
>>> ultra.data

>>> # Use any serializer you like, given it supports the loads() and dumps() methods
>>> import pickle 
>>> ultra = UltraDict(serializer=pickle)

>>> # Unlink all shared memory, it will not be visible to new processes afterwards
>>> ultra.unlink()

Contributing

Contributions are always welcome!

Comments
  • Crashes under high load

    Crashes under high load

    master process is writing to 1 nested dict1 (recurse=1) shared between 20-40 processes, total dict1 size ~1500 keys with nested dict (as value, small)

    processes created via multiprocessing.Process, and writing to other shared dict - dict2[process_id] once per second, dict2 size - same, but *num_processes

    main process analyzing statistics from dict2: for process_id in dict2: dict2[process_id]: ... and write changes to shared dict1 once per second: for change in changes: dict1['nested'][change] = {'time': 123, 'blah': '123'}

    crashing appears if changes size is 300-2000 in 1 second, and read lookups is HUGE (>100k/sec) but i tried to cache it once per second to local dict using deepcopy and this doesnt help... total memory usage not exceed 2-4GB i think (free ram is about 60GB), CPU usage up to 100%

    dict1 size in bytes determined on local dict with same structure is less than 150kb

    i tried:

    1. copy.deepcopy(dict1) once per second to create a local copy in processes for cached lookups - doesn't help
    2. shared_lock
    3. with dict1.lock/etc
    4. increasing buffer to huge values, increasing full dump size/etc

    and nothing helps... on low speeds (or no/small changes from master to dict1) all is working, or using multiprocessing.manager().dict all is working too, but slow

    Examples of exceptions:

    Exception in thread Thread-1:
    Traceback (most recent call last):
      File "/usr/lib/python3.9/threading.py", line 954, in _bootstrap_inner
    	self.run()
      File "/usr/lib/python3.9/threading.py", line 892, in run
    	self._target(*self._args, **self._kwargs)
      File "zvshield.py", line 793, in zvshield.accept_connections
      File "/usr/local/lib/python3.9/dist-packages/UltraDict/UltraDict.py", line 585, in __contains__
    	self.apply_update()
      File "/usr/local/lib/python3.9/dist-packages/UltraDict/UltraDict.py", line 511, in apply_update
    	assert bytes(self.buffer.buf[pos:pos+1]) == b'\x00'
    AssertionError
    
    
    File "/usr/local/lib/python3.9/dist-packages/UltraDict/UltraDict.py", line 248, in __init__
    	self.buffer = self.get_memory(create=True, name=self.name + '_memory', size=buffer_size)
      File "/usr/local/lib/python3.9/dist-packages/UltraDict/UltraDict.py", line 347, in get_memory
    	full_dump = self.serializer.loads(bytes(buf[pos:pos+length]))
      File "/usr/local/lib/python3.9/dist-packages/UltraDict/UltraDict.py", line 304, in __init__
    	self.apply_update()
      File "/usr/local/lib/python3.9/dist-packages/UltraDict/UltraDict.py", line 520, in apply_update
    	memory = multiprocessing.shared_memory.SharedMemory(name=name)
      File "/usr/lib/python3.9/multiprocessing/shared_memory.py", line 114, in __init__
    	mode, key, value = self.serializer.loads(bytes(self.buffer.buf[pos:pos+length]))
    	self._mmap = mmap.mmap(self._fd, size)
    OSError: [Errno 12] Cannot allocate memory
    
    EOFError: Ran out of input
    Exception ignored in: <function SharedMemory.__del__ at 0x7fb80639e820>
    
    Traceback (most recent call last):
      File "/usr/lib/python3.9/multiprocessing/shared_memory.py", line 184, in __del__
    	self.close()
      File "/usr/lib/python3.9/multiprocessing/shared_memory.py", line 227, in close
    Exception ignored in: <function SharedMemory.__del__ at 0x7fb80639e820>
    	self._mmap.close()
    Traceback (most recent call last):
    BufferError: cannot close exported pointers exist
      File "/usr/lib/python3.9/multiprocessing/shared_memory.py", line 184, in __del__
    	self.close()
      File "/usr/lib/python3.9/multiprocessing/shared_memory.py", line 227, in close
    	self._mmap.close()
    BufferError: cannot close exported pointers exist
    Traceback (most recent call last):
      File "/usr/lib/python3.9/multiprocessing/shared_memory.py", line 184, in __del__
    	self.close()
      File "/usr/lib/python3.9/multiprocessing/shared_memory.py", line 227, in close
    	self._mmap.close()
    BufferError: cannot close exported pointers exist
    Exception in thread Thread-1:
    Traceback (most recent call last):
      File "/usr/lib/python3.9/threading.py", line 954, in _bootstrap_inner
    	self.run()
      File "/usr/lib/python3.9/threading.py", line 892, in run
    	self._target(*self._args, **self._kwargs)
      File "zvshield.py", line 793, in zvshield.accept_connections
      File "/usr/local/lib/python3.9/dist-packages/UltraDict/UltraDict.py", line 585, in __contains__
    	self.apply_update()
      File "/usr/local/lib/python3.9/dist-packages/UltraDict/UltraDict.py", line 500, in apply_update
    	self.load(force=True)
      File "/usr/local/lib/python3.9/dist-packages/UltraDict/UltraDict.py", line 450, in load
    	full_dump = self.serializer.loads(bytes(buf[pos:pos+length]))
      File "/usr/local/lib/python3.9/dist-packages/UltraDict/UltraDict.py", line 304, in __init__
    	self.apply_update()
      File "/usr/local/lib/python3.9/dist-packages/UltraDict/UltraDict.py", line 520, in apply_update
    	mode, key, value = self.serializer.loads(bytes(self.buffer.buf[pos:pos+length]))
    EOFError: Ran out of input
    Exception ignored in: <function SharedMemory.__del__ at 0x7fc48f4d4820>
    Traceback (most recent call last):
      File "/usr/lib/python3.9/multiprocessing/shared_memory.py", line 184, in __del__
    	self.close()
      File "/usr/lib/python3.9/multiprocessing/shared_memory.py", line 227, in close
    	self._mmap.close()
    BufferError: cannot close exported pointers exist
    Exception in thread Thread-1:
    Traceback (most recent call last):
      File "/usr/lib/python3.9/threading.py", line 954, in _bootstrap_inner
    	self.run()
      File "/usr/lib/python3.9/threading.py", line 892, in run
    	self._target(*self._args, **self._kwargs)
      File "zvshield.py", line 793, in zvshield.accept_connections
      File "/usr/local/lib/python3.9/dist-packages/UltraDict/UltraDict.py", line 585, in __contains__
    	self.apply_update()
      File "/usr/local/lib/python3.9/dist-packages/UltraDict/UltraDict.py", line 500, in apply_update
    	self.load(force=True)
      File "/usr/local/lib/python3.9/dist-packages/UltraDict/UltraDict.py", line 450, in load
    	full_dump = self.serializer.loads(bytes(buf[pos:pos+length]))
      File "/usr/local/lib/python3.9/dist-packages/UltraDict/UltraDict.py", line 304, in __init__
    	self.apply_update()
      File "/usr/local/lib/python3.9/dist-packages/UltraDict/UltraDict.py", line 520, in apply_update
    	mode, key, value = self.serializer.loads(bytes(self.buffer.buf[pos:pos+length]))
    EOFError: Ran out of input
    
    Exception ignored in: <function SharedMemory.__del__ at 0x7fc48f4d4820>
    Traceback (most recent call last):
      File "/usr/lib/python3.9/multiprocessing/shared_memory.py", line 184, in __del__
    	self.close()
      File "/usr/lib/python3.9/multiprocessing/shared_memory.py", line 227, in close
    	self._mmap.close()
    BufferError: cannot close exported pointers exist
    
    
    opened by rojamit 33
  • Question - pickle.UnpicklingError: pickle data was truncated

    Question - pickle.UnpicklingError: pickle data was truncated

    I got an error pickle.UnpicklingError: pickle data was truncated

    while try to utilize this library... how does this error message get generated? and how can I avoid this in the future?

    Another weird one UnicodeDecodeError: 'utf-8' codec can't decode byte 0xe4 in position 201: invalid continuation byte

    opened by mccoydj1 15
  • Extremely slow initialization from existing dict

    Extremely slow initialization from existing dict

    Initializing from a (large) existing dict is slow -- it seems to be serializing every key-value pair as an update:

    Traceback (most recent call last):
      File "/global/homes/p/pfasano/group_stats_dict.py", line 327, in <module>
        group_dict = read_groups(partitions, sp_bin)
      File "/global/homes/p/pfasano/group_stats_dict.py", line 206, in read_groups
        return UltraDict(group_dict, auto_unlink=True)
      File "/global/homes/p/pfasano/.local/perlmutter/3.9-anaconda-2021.11/lib/python3.9/site-packages/UltraDict/UltraDict.py", line 301, in __init__
        super().__init__(*args, **kwargs)
      File "/global/common/software/nersc/pm-2022q2/sw/python/3.9-anaconda-2021.11/lib/python3.9/collections/__init__.py", line 1046, in __init__
        self.update(dict)
      File "/global/homes/p/pfasano/.local/perlmutter/3.9-anaconda-2021.11/lib/python3.9/site-packages/UltraDict/UltraDict.py", line 541, in update
        self[k] = v
      File "/global/homes/p/pfasano/.local/perlmutter/3.9-anaconda-2021.11/lib/python3.9/site-packages/UltraDict/UltraDict.py", line 568, in __setitem__
        self.append_update(key, item)
      File "/global/homes/p/pfasano/.local/perlmutter/3.9-anaconda-2021.11/lib/python3.9/site-packages/UltraDict/UltraDict.py", line 482, in append_update
        self.dump()
      File "/global/homes/p/pfasano/.local/perlmutter/3.9-anaconda-2021.11/lib/python3.9/site-packages/UltraDict/UltraDict.py", line 374, in dump
        marshalled = self.serializer.dumps(self.data)
    

    It seems like somehow super().__init__ is calling collections.UserDict.__init__, which in turn calls UltraDict.__setitem__.

    I guess I don't quite understand yet how UltraDict works, but why does every key need to be serialized as an update to an empty dict?

    opened by kc9jud 6
  • Crash

    Crash

    Cannot re-start my app, even after restart the computer.

    C:\Users\marce\PycharmProjects\srsapp\venv310\Scripts\python.exe C:/Users/marce/PycharmProjects/srsapp/launcher.py --enable_file_cache True Traceback (most recent call last): File "C:\Users\marce\PycharmProjects\srsapp\launcher.py", line 7, in import globalVariables File "C:\Users\marce\PycharmProjects\srsapp\globalVariables.py", line 574, in config = UltraDict(name='config1', size=500000) File "C:\Users\marce\PycharmProjects\srsapp\venv310\lib\site-packages\UltraDict\UltraDict.py", line 288, in init super().init(*args, **kwargs) File "C:\Users\marce\AppData\Local\Programs\Python\Python310\lib\collections_init_.py", line 1092, in init self.update(kwargs) File "C:\Users\marce\PycharmProjects\srsapp\venv310\lib\site-packages\UltraDict\UltraDict.py", line 498, in update self[k] = v File "C:\Users\marce\PycharmProjects\srsapp\venv310\lib\site-packages\UltraDict\UltraDict.py", line 514, in setitem self.apply_update() File "C:\Users\marce\PycharmProjects\srsapp\venv310\lib\site-packages\UltraDict\UltraDict.py", line 464, in apply_update self.load(force=True) File "C:\Users\marce\PycharmProjects\srsapp\venv310\lib\site-packages\UltraDict\UltraDict.py", line 398, in load full_dump_memory = self.get_memory(create=False, name=name) File "C:\Users\marce\PycharmProjects\srsapp\venv310\lib\site-packages\UltraDict\UltraDict.py", line 329, in get_memory raise Exception("Could not get memory: ", name) Exception: ('Could not get memory: ', 'wnsm_0ce9a65a') Exception ignored in: <function SharedMemory.del at 0x000001F84F477880> Traceback (most recent call last): File "C:\Users\marce\AppData\Local\Programs\Python\Python310\lib\multiprocessing\shared_memory.py", line 184, in del self.close() File "C:\Users\marce\AppData\Local\Programs\Python\Python310\lib\multiprocessing\shared_memory.py", line 227, in close self._mmap.close() BufferError: cannot close exported pointers exist

    opened by marcelomanzo 6
  • Duplicate logs

    Duplicate logs

    Hello maybe this is a noob question, but I'm having this problem that when using the library some logs gets duplicated.

    image

    image

    image

    This is a very basic setup of FastAPI with UltraDict

    opened by marianomat 5
  • Problem updating iterating on values

    Problem updating iterating on values

    Hi! i started using your dictionary in my project however I found a bug while trying to iterate on the dictionary values. Those few lines of code trigger the bug.

    Screenshot from 2022-05-17 12-15-58 .

    It can be solve by applying apply_update before trying to iterate on the values, however the function is already called by the same process before trying to iterate (I added a print) so I do not really understand why is it solving it. However I'm probably going to iterate over keys instead, trying to bypass it by iterating over items but it is not working too :-)

    opened by hugo3m 5
  • Unable to access Ultradict after a certain loop Limit, Issue occurs Only on Linux.............

    Unable to access Ultradict after a certain loop Limit, Issue occurs Only on Linux.............

    from UltraDict import UltraDict

    ultra = UltraDict({ 'init': 'some initial data' }, name='myname1')

    for i in range(1,5000): print(UltraDict(name='myname1'))

    ############### ERROR ################# File "/home/merit/miniconda3/lib/python3.9/site-packages/UltraDict/UltraDict.py", line 659, in unlink self.control.unlink() File "/home/merit/miniconda3/lib/python3.9/multiprocessing/shared_memory.py", line 241, in unlink _posixshmem.shm_unlink(self._name) FileNotFoundError: [Errno 2] No such file or directory: '/myname1'

    opened by hemakumar01 4
  • Shared memory not always cleared

    Shared memory not always cleared

    Hi,

    I'm using UltraDict to share data between a master process and several subprocesses.

    I have auto_unlink=True on all declarations, but sometimes if the script fails (meaning something wrong in the code, or an unexpected error) it won't clear the memory, thus on the next run, when the master process creates the "new" UltraDict object, it reuses the same information from the previous execution (as the UltraDict names are predefined).

    Is there a way to clear the memory of previous executions without having to reboot the server?

    Thanks.

    opened by joelsdc 2
  • Memory usage analysis

    Memory usage analysis

    before image

    testing... image

    after image

    seems ok, ultra-dict didnt eats memory after test done. -- i am afraid it allocates memory and did't release thus the server will oom finally.

    if you have any thoughts to test it plz let me know, i want to use ultra-dict in our prod env but afraid something went wrong.

    opened by csrgxtu 2
  • The dict does not delete items but put an empty string

    The dict does not delete items but put an empty string

    Hello, I am currently using your dictionary for my project. Then I found a problem when I try to delete an item from the dict. Instead of deleting, the dict replaces the value that needs to be deleted by an empty string and it leads to a bug in my project. I am writing a small piece of code to reproduce this behavior as you can find hereafter. Hope it can help you to figure out the problem.

    from UltraDict import UltraDict
    import random
    import string
    letters = string.ascii_lowercase
    rand_str =   ''.join(random.choice(letters) for i in range(1000)) 
    my_dict = UltraDict()
    for i in range(10000):
    	my_dict[i] = rand_str
    for i in list(my_dict.keys()):
    	del my_dict[i]
    print (my_dict)
    

    and here are the results I got {379: b'', 750: b'', 1121: b'', 1492: b'', 1863: b'', 2234: b'', 2605: b'', 2976: b'', 3347: b'', 3718: b'', 4089: b'', 4460: b'', 4831: b'', 5202: b'', 5573: b'', 5944: b'', 6315: b'', 6686: b'', 7057: b'', 7428: b'', 7799: b'', 8170: b'', 8541: b'', 8912: b'', 9283: b'', 9654: b''}

    Thank you

    opened by haidang1201 2
  • UltraDict dependency 'atomics' is not compatible with MacBook silicon (m1)

    UltraDict dependency 'atomics' is not compatible with MacBook silicon (m1)

    Version : branch master OS: macOS big sur version 11.6 The scenario: I'm using this module in an algotrading bot app. One mechanism I'm driving with this is helping the bot get quick updates from other process which is responsible of transmitting price updates. The dictionary is a smart move as it is the right tool for the job. Process A fill a dictionary with prices . Process B consume those prices and makes math calculations based on them.

    My Issue . As the bot run inside a while loop , it never really exits gracefully but through an interrupt (SIGINT , then SIGTERM) if the Producer of dict(Process A) exit by SIGINT its fine. but if Process B (consumer) exit by SIGINT the dictionary seems to enter a state which you can't clear it even with unlink() and close(). only restart helps with this scenario (checked /dev/shm but /shm does not exist on my hd)

    That lad me to try the shared lock mechanism (because I thought it might help with accessing this map with a lock) When I run the code again I was given an error stating "atomics" is not found. after a short pip install atomics I found out they don't have a wheel for Mac arm wheel but only universal one. when running again I get the error of "mech-o:wrong architecture" even if I exclude t "shared lock=true" it keeps throw errors on the same thing. a restart to the computer is the only thing which clears that thing.

    I suggest sort this quick as MacBook m1 computers are not that rare and it's actually a quite great library which I'm currently cannot really use :\

    opened by JOEAV 4
  • Improve write performance by using faster locking

    Improve write performance by using faster locking

    The library that is used for atomic test_and_set operations on the shared memory has a performance issue.

    It will be fixed by the author and should give us more write speed.

    Related ticket: https://github.com/doodspav/atomics/issues/3

    enhancement 
    opened by ronny-rentner 0
  • Add configurable timeout when waiting to acquire a lock

    Add configurable timeout when waiting to acquire a lock

    Currently hardcoded to 100_000 loops.

    In Python 3.11, there's a new nanosleep(). Before, it's hard to sleep a nanosecond in Python without using busy wait.

    We need to find a better solution for waiting for Python < 3.11

    enhancement 
    opened by ronny-rentner 0
Releases(v0.0.6)
Owner
Ronny Rentner
Ronny Rentner
Search-Engine - 📖 AI based search engine

Search Engine AI based search engine that was trained on 25000 samples, feel free to train on up to 1.2M sample from kaggle dataset, link below StackS

Vladislav Kruglikov 2 Nov 29, 2022
A library that integrates huggingface transformers with the world of fastai, giving fastai devs everything they need to train, evaluate, and deploy transformer specific models.

blurr A library that integrates huggingface transformers with version 2 of the fastai framework Install You can now pip install blurr via pip install

ohmeow 253 Dec 31, 2022
Search for documents in a domain through Google. The objective is to extract metadata

MetaFinder - Metadata search through Google _____ __ ___________ .__ .___ / \

Josué Encinar 85 Dec 16, 2022
Python port of Google's libphonenumber

phonenumbers Python Library This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase,

David Drysdale 3.1k Dec 29, 2022
Fake news detector filters - Smart filter project allow to classify the quality of information and web pages

fake-news-detector-1.0 Lists, lists and more lists... Spam filter list, quality keyword list, stoplist list, top-domains urls list, news agencies webs

Memo Sim 1 Jan 04, 2022
A unified tokenization tool for Images, Chinese and English.

ICE Tokenizer Token id [0, 20000) are image tokens. Token id [20000, 20100) are common tokens, mainly punctuations. E.g., icetk[20000] == 'unk', ice

THUDM 42 Dec 27, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Jan 03, 2023
PyTorch impelementations of BERT-based Spelling Error Correction Models.

PyTorch impelementations of BERT-based Spelling Error Correction Models

Heng Cai 209 Dec 30, 2022
The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

VAENAR-TTS This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis". Sa

THUHCSI 138 Oct 28, 2022
Weird Sort-and-Compress Thing

Weird Sort-and-Compress Thing A weird integer sorting + compression algorithm inspired by a conversation with Luthingx (it probably already exists by

Douglas 1 Jan 03, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
This program do translate english words to portuguese

Python-Dictionary This program is used to translate english words to portuguese. Web-Scraping This program use BeautifulSoap to make web scraping, so

João Assalim 1 Oct 10, 2022
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 342 Jan 05, 2023
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 29, 2022
EdiTTS: Score-based Editing for Controllable Text-to-Speech

Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

Neosapience 99 Jan 02, 2023
aMLP Transformer Model for Japanese

aMLP-japanese Japanese aMLP Pretrained Model aMLPとは、Liu, Daiらが提案する、Transformerモデルです。 ざっくりというと、BERTの代わりに使えて、より性能の良いモデルです。 詳しい解説は、こちらの記事などを参考にしてください。 この

tanreinama 13 Aug 11, 2022
Creating a Feed of MISP Events from ThreatFox (by abuse.ch)

ThreatFox2Misp Creating a Feed of MISP Events from ThreatFox (by abuse.ch) What will it do? This will fetch IOCs from ThreatFox by Abuse.ch, convert t

17 Nov 22, 2022
Huggingface Transformers + Adapters = ❤️

adapter-transformers A friendly fork of HuggingFace's Transformers, adding Adapters to PyTorch language models adapter-transformers is an extension of

AdapterHub 1.2k Jan 09, 2023
Negative sampling for solving the unlabeled entity problem in NER. ICLR-2021 paper: Empirical Analysis of Unlabeled Entity Problem in Named Entity Recognition.

Negative Sampling for NER Unlabeled entity problem is prevalent in many NER scenarios (e.g., weakly supervised NER). Our paper in ICLR-2021 proposes u

Yangming Li 128 Dec 29, 2022
This is the source code of RPG (Reward-Randomized Policy Gradient)

RPG (Reward-Randomized Policy Gradient) Zhenggang Tang*, Chao Yu*, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Shaolei Du, Yu Wang, Yi Wu (

40 Nov 25, 2022