Conversational text Analysis using various NLP techniques

Overview

PyConverse


Let me try first

Installation

pip install pyconverse

Usage

Please try this notebook that demos the core functionalities: basic usage notebook

Introduction

Conversation analytics plays an increasingly important role in shaping great customer experiences across various industries like finance/contact centres etc... primarily to gain a deeper understanding of the customers and to better serve their needs. This library, PyConverse is an attempt to provide tools & methods which can be used to gain an understanding of the conversations from multiple perspectives using various NLP techniques.

Why PyConverse?

I have been doing what can be called conversational text NLP with primarily contact centre data from various domains like Financial services, Banking, Insurance etc for the past year or so, and I have not come across any interesting open-source tools that can help in understanding conversational texts as such I decided to create this library that can provide various tools and methods to analyse calls and help answer important questions/compute important metrics that usually people want to find from conversations, in contact centre data analysis settings.

Where can I use PyConverse?

The primary use case is geared towards contact centre call analytics, but most of the tools that Converse provides can be used elsewhere as well.

There’s a lot of insights hidden in every single call that happens, Converse enables you to extract those insights and compute various kinds of KPIs from the point of Operational Efficiency, Agent Effectiveness & monitoring Customer Experience etc.

If you are looking to answer questions like these:-

  1. What was the overall sentiment of the conversation that was exhibited by the speakers?
  2. Was there periods of dead air(silence periods) between the agents and customer? if so how much?
  3. Was the agent empathetic towards the customer?
  4. What was the average agent response time/average hold time?
  5. What was being said on calls?

and more... pyconverse might be of small help.

What can PyConverse do?

At the moment pyconverse can do a few things that broadly fall into these categories:-

  1. Emotion identification
  2. Empathetic statement identification
  3. Call Segmentation
  4. Topic identification from call segments
  5. Compute various types of Speaker attributes:
    1. linguistic attributes like: word counts/number of words per utterance/negations etc.
    2. Identify periods of silence & interruptions.
    3. Question identification
    4. Backchannel identification
  6. Assess the overall nature of the speaker via linguistic attributes and tell if the Speaker is:
    1. Talkative, verbally fluent
    2. Informal/Personal/social
    3. Goal-oriented or Forward/future-looking/focused on past
    4. Identify inhibitions

What Next?

  1. Improve documentation.
  2. Add more use case notebooks/examples.
  3. Improve some of the functionalities and make it more streamlined.

Built with:

Transformers Spacy Pytorch

Credits:

Note: The backchannel Utterance classification method is inspired by facebook's Unsupervised Topic Segmentation of Meetings with BERT Embeddings paper (arXiv:2106.12978 [cs.LG])

You might also like...
nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.
nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations

FantasyBert English | 中文 Introduction An easy-to-use framework for BERT models, with trainers, various NLP tasks and detailed annonations. You can imp

Grading tools for Advanced NLP (11-711)Grading tools for Advanced NLP (11-711)

Grading tools for Advanced NLP (11-711) Installation You'll need docker and unzip to use this repo. For docker, visit the official guide to get starte

Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.

Kashgari Overview | Performance | Installation | Documentation | Contributing 🎉 🎉 🎉 We released the 2.0.0 version with TF2 Support. 🎉 🎉 🎉 If you

Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.

Kashgari Overview | Performance | Installation | Documentation | Contributing 🎉 🎉 🎉 We released the 2.0.0 version with TF2 Support. 🎉 🎉 🎉 If you

Using Bert as the backbone model for lime, designed for NLP task explanation (sentence pair text classification task)

Lime Comparing deep contextualized model for sentences highlighting task. In addition, take the classic explanation model "LIME" with bert-base model

Various capabilities for static malware analysis.

Malchive The malchive serves as a compendium for a variety of capabilities mainly pertaining to malware analysis, such as scripts supporting day to da

Python bindings to the dutch NLP tool Frog (pos tagger, lemmatiser, NER tagger, morphological analysis, shallow parser, dependency parser)

Frog for Python This is a Python binding to the Natural Language Processing suite Frog. Frog is intended for Dutch and performs part-of-speech tagging

pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks

A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

Comments
  • SemanticTextSegmentation NaN With All Stop Words

    SemanticTextSegmentation NaN With All Stop Words

    When running semantic text segmentation, I found that if the input utterance line is all stop words, (i.e. "Bye. Uh huh. Yeah."), SemanticTextSegmentation._get_similarity fails with ValueError: Input contains NaN.

    I found that adding a check for nan in both embeddings could solve this problem.

    def _get_similarity(self, text1, text2):
        sentence_1 = [i.text.strip()
                      for i in nlp(text1).sents if len(i.text.split(' ')) > 1]
        sentence_2 = [i.text.strip()
                      for i in nlp(text2).sents if len(i.text.split(' ')) > 2]
        embeding_1 = model.encode(sentence_1)
        embeding_2 = model.encode(sentence_2)
        embeding_1 = np.mean(embeding_1, axis=0).reshape(1, -1)
        embeding_2 = np.mean(embeding_2, axis=0).reshape(1, -1)
    
        if np.any(np.isnan(embeding_1)) or np.any(np.isnan(embeding_2)):
                return 1
    
        sim = cosine_similarity(embeding_1, embeding_2)
        return sim
    

    I would like to have someone else look at it because I don't want to make any assumptions that the stop words should be part of the same segments.

    opened by Haowjy 1
  • Updated  lru_cache decorator.

    Updated lru_cache decorator.

    After installing and running the library pyconverse on python-3.7 or below and using the import statement it gives error in import itself. I went through the utils file and saw that the "@lru_cache" decorator was written as per the new python(i.e. 3.8+) style hence when calling in older versions(py 3.7 and below it raises a NoneType Error) as the LRU_CACHE decorator is written as -" @lru_cache() " with paranthesis for older versions . Hence made the changes. The changes made do not cause any error on the newer versions.

    opened by AkashKhamkar 0
  • Error in importing Callyzer, SpeakerStats

    Error in importing Callyzer, SpeakerStats

    When I want to load the model it's showing this error.Whether it is currently in devloped mode des

    KeyError: "[E002] Can't find factory for 'tok2vec'. This usually happens when spaCy callsnlp.create_pipewith a component name that's not built in - for example, when constructing the pipeline from a model's meta.json. If you're using a custom component, you can write to Language.factories['tok2vec'] or remove it from the ### model meta and add it vianlp.add_pipeinstead.

    opened by kalpa277 0
Releases(v0.2.0)
  • v0.2.0(Nov 21, 2021)

    First Release of PyConverse library.

    Conversational Transcript Analysis using various NLP techniques.

    1. Emotion identification
    2. Empathetic statement identification
    3. Call Segmentation
    4. Topic identification from call segments
    5. Compute various types of Speaker attributes:
      • linguistic attributes like : word counts/number of words per utterance/negations etc
      • Identify periods of silence & interruptions.
      • Question identification
      • Backchannel identification
    6. Assess the overall nature of the speaker via linguistic attributes and tell if the Speaker is:
      • Talkative, verbally fluent
      • Informal/Personal/social
      • Goal-oriented or Forward/future-looking/focused on past
      • Identify inhibitions
    Source code(tar.gz)
    Source code(zip)
Owner
Rita Anjana
ML engineer
Rita Anjana
This repo contains simple to use, pretrained/training-less models for speaker diarization.

PyDiar This repo contains simple to use, pretrained/training-less models for speaker diarization. Supported Models Binary Key Speaker Modeling Based o

12 Jan 20, 2022
Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Hans Alemão 4 Jul 20, 2022
Unsupervised Language Model Pre-training for French

FlauBERT and FLUE FlauBERT is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the n

GETALP 212 Dec 10, 2022
This Project is based on NLTK It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its antonyms, its synonyms

This Project is based on NLTK(Natural Language Toolkit) It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its

SaiVenkatDhulipudi 2 Nov 17, 2021
构建一个多源(公众号、RSS)、干净、个性化的阅读环境

2C 构建一个多源(公众号、RSS)、干净、个性化的阅读环境 作为一名微信公众号的重度用户,公众号一直被我设为汲取知识的地方。随着使用程度的增加,相信大家或多或少会有一个比较头疼的问题——广告问题。 假设你关注的公众号有十来个,若一个公众号两周接一次广告,理论上你会面临二十多次广告,实际上会更多,运

howie.hu 678 Dec 28, 2022
基于pytorch_rnn的古诗词生成

pytorch_peot_rnn 基于pytorch_rnn的古诗词生成 说明 config.py里面含有训练、测试、预测的参数,更改后运行: python main.py 预测结果 if config.do_predict: result = trainer.generate('丽日照残春')

西西嘛呦 3 May 26, 2022
Seonghwan Kim 24 Sep 11, 2022
Contract Understanding Atticus Dataset

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
A Paper List for Speech Translation

Keyword: Speech Translation, Spoken Language Processing, Natural Language Processing

138 Dec 24, 2022
Based on 125GB of data leaked from Twitch, you can see their monthly revenues from 2019-2021

Twitch Revenues Bu script'i kullanarak istediğiniz yayıncıların, Twitch'den sızdırılan 125 GB'lik veriye dayanarak, 2019-2021 arası aylık gelirlerini

4 Nov 11, 2021
A paper list for aspect based sentiment analysis.

Aspect-Based-Sentiment-Analysis A paper list for aspect based sentiment analysis. Survey [IEEE-TAC-20]: Issues and Challenges of Aspect-based Sentimen

jiangqn 419 Dec 20, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
This is a project of data parallel that running on NLP tasks.

This is a project of data parallel that running on NLP tasks.

2 Dec 12, 2021
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.data: Generic data loaders, abstractions, and iterators for text (including vocabulary and word vecto

3.2k Dec 30, 2022
Sample data associated with the Aurora-BP study

The Aurora-BP Study and Dataset This repository contains sample code, sample data, and explanatory information for working with the Aurora-BP dataset

Microsoft 16 Dec 12, 2022
Build Text Rerankers with Deep Language Models

Reranker is a lightweight, effective and efficient package for training and deploying deep languge model reranker in information retrieval (IR), question answering (QA) and many other natural languag

Luyu Gao 140 Dec 06, 2022
Turkish Stop Words Türkçe Dolgu Sözcükleri

trstop Turkish Stop Words Türkçe Dolgu Sözcükleri In this repository I put Turkish stop words that is contained in the first 10 thousand words with th

Ahmet Aksoy 103 Nov 12, 2022
Research code for ECCV 2020 paper "UNITER: UNiversal Image-TExt Representation Learning"

UNITER: UNiversal Image-TExt Representation Learning This is the official repository of UNITER (ECCV 2020). This repository currently supports finetun

Yen-Chun Chen 680 Dec 24, 2022
A library that integrates huggingface transformers with the world of fastai, giving fastai devs everything they need to train, evaluate, and deploy transformer specific models.

blurr A library that integrates huggingface transformers with version 2 of the fastai framework Install You can now pip install blurr via pip install

ohmeow 253 Dec 31, 2022