pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks

Overview

pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks

Tests

A Transformer-based library for SocialNLP classification tasks.

Currently supports:

  • Sentiment Analysis (Spanish, English)
  • Emotion Analysis (Spanish, English)

Just do pip install pysentimiento and start using it:

Test it in Colab

from pysentimiento import SentimentAnalyzer
analyzer = SentimentAnalyzer(lang="es")

analyzer.predict("Qué gran jugador es Messi")
# returns SentimentOutput(output=POS, probas={POS: 0.998, NEG: 0.002, NEU: 0.000})
analyzer.predict("Esto es pésimo")
# returns SentimentOutput(output=NEG, probas={NEG: 0.999, POS: 0.001, NEU: 0.000})
analyzer.predict("Qué es esto?")
# returns SentimentOutput(output=NEU, probas={NEU: 0.993, NEG: 0.005, POS: 0.002})

analyzer.predict("jejeje no te creo mucho")
# SentimentOutput(output=NEG, probas={NEG: 0.587, NEU: 0.408, POS: 0.005})
"""
Emotion Analysis in English
"""

emotion_analyzer = EmotionAnalyzer(lang="en")

emotion_analyzer.predict("yayyy")
# returns EmotionOutput(output=joy, probas={joy: 0.723, others: 0.198, surprise: 0.038, disgust: 0.011, sadness: 0.011, fear: 0.010, anger: 0.009})
emotion_analyzer.predict("fuck off")
# returns EmotionOutput(output=anger, probas={anger: 0.798, surprise: 0.055, fear: 0.040, disgust: 0.036, joy: 0.028, others: 0.023, sadness: 0.019})

Also, you might use pretrained models directly with transformers library.

from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("finiteautomata/beto-sentiment-analysis")

model = AutoModelForSequenceClassification.from_pretrained("finiteautomata/beto-sentiment-analysis")

Preprocessing

pysentimiento features a tweet preprocessor specially suited for tweet classification with transformer-based models.

from pysentimiento.preprocessing import preprocess_tweet

# Replaces user handles and URLs by special tokens
preprocess_tweet("@perezjotaeme debería cambiar esto http://bit.ly/sarasa") # "@usuario debería cambiar esto url"

# Shortens repeated characters
preprocess_tweet("no entiendo naaaaaaaadaaaaaaaa", shorten=2) # "no entiendo naadaa"

# Normalizes laughters
preprocess_tweet("jajajajaajjajaajajaja no lo puedo creer ajajaj") # "jaja no lo puedo creer jaja"

# Handles hashtags
preprocess_tweet("esto es #UnaGenialidad")
# "esto es una genialidad"

# Handles emojis
preprocess_tweet("🎉🎉", lang="en")
# 'emoji party popper emoji emoji party popper emoji'

Trained models so far

Check CLASSIFIERS.md for details on the reported performances of each model.

Spanish models

English models

Instructions for developers

  1. First, download TASS 2020 data to data/tass2020 (you have to register here to download the dataset)

Labels must be placed under data/tass2020/test1.1/labels

  1. Run script to train models

Check TRAIN_EVALUATE.md

  1. Upload models to Huggingface's Model Hub

Check "Model sharing and upload" instructions in huggingface docs.

License

pysentimiento is an open-source library. However, please be aware that models are trained with third-party datasets and are subject to their respective licenses, many of which are for non-commercial use

  1. TASS Dataset license (License for Sentiment Analysis in Spanish, Emotion Analysis in Spanish & English)
  2. SEMEval 2017 Dataset license (Sentiment Analysis in English)

Citation

If you use pysentimiento in your work, please cite this paper

@misc{perez2021pysentimiento,
      title={pysentimiento: A Python Toolkit for Sentiment Analysis and SocialNLP tasks},
      author={Juan Manuel Pérez and Juan Carlos Giudici and Franco Luque},
      year={2021},
      eprint={2106.09462},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

TODO:

  • Upload some other models
  • Train in other languages

Suggestions and bugfixes

Please use the repository issue tracker to point out bugs and make suggestions (new models, use another datasets, some other languages, etc)

Mastering Transformers, published by Packt

Mastering Transformers This is the code repository for Mastering Transformers, published by Packt. Build state-of-the-art models from scratch with adv

Packt 195 Jan 01, 2023
Toward Model Interpretability in Medical NLP

Toward Model Interpretability in Medical NLP LING380: Topics in Computational Linguistics Final Project James Cross ( 1 Mar 04, 2022

Top2Vec is an algorithm for topic modeling and semantic search.

Top2Vec is an algorithm for topic modeling and semantic search. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors.

Dimo Angelov 2.4k Jan 06, 2023
A Chinese to English Neural Model Translation Project

ZH-EN NMT Chinese to English Neural Machine Translation This project is inspired by Stanford's CS224N NMT Project Dataset used in this project: News C

Zhenbang Feng 29 Nov 26, 2022
Generate vector graphics from a textual caption

VectorAscent: Generate vector graphics from a textual description Example "a painting of an evergreen tree" python text_to_painting.py --prompt "a pai

Ajay Jain 97 Dec 15, 2022
构建一个多源(公众号、RSS)、干净、个性化的阅读环境

2C 构建一个多源(公众号、RSS)、干净、个性化的阅读环境 作为一名微信公众号的重度用户,公众号一直被我设为汲取知识的地方。随着使用程度的增加,相信大家或多或少会有一个比较头疼的问题——广告问题。 假设你关注的公众号有十来个,若一个公众号两周接一次广告,理论上你会面临二十多次广告,实际上会更多,运

howie.hu 678 Dec 28, 2022
💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

Explosion 24.9k Jan 02, 2023
ByT5: Towards a token-free future with pre-trained byte-to-byte models

ByT5: Towards a token-free future with pre-trained byte-to-byte models ByT5 is a tokenizer-free extension of the mT5 model. Instead of using a subword

Google Research 409 Jan 06, 2023
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 159 Apr 04, 2022
MEDIALpy: MEDIcal Abbreviations Lookup in Python

A small python package that allows the user to look up common medical abbreviations.

Aberystwyth Systems Biology 7 Nov 09, 2022
Transformers implementation for Fall 2021 Clinic

Installation Download miniconda3 if not already installed You can check by running typing conda in command prompt. Use conda to create an environment

Aakash Tripathi 1 Oct 28, 2021
Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS)

This repository is an implementation of Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis (SV2TTS) with a vocoder that works in real-time. Feel free to check my the

Corentin Jemine 38.5k Jan 03, 2023
Fastseq 基于ONNXRUNTIME的文本生成加速框架

Fastseq 基于ONNXRUNTIME的文本生成加速框架

Jun Gao 9 Nov 09, 2021
Simple program that translates the name of files into English

Simple program that translates the name of files into English. Useful for when editing/inspecting programs that were developed in a foreign language.

0 Dec 22, 2021
Few-shot Natural Language Generation for Task-Oriented Dialog

Few-shot Natural Language Generation for Task-Oriented Dialog This repository contains the dataset, source code and trained model for the following pa

172 Dec 13, 2022
Use fastai-v2 with HuggingFace's pretrained transformers

FastHugs Use fastai v2 with HuggingFace's pretrained transformers, see the notebooks below depending on your task: Text classification: fasthugs_seq_c

Morgan McGuire 111 Nov 16, 2022
This is a modification of the OpenAI-CLIP repository of moein-shariatnia

This is a modification of the OpenAI-CLIP repository of moein-shariatnia

Sangwon Beak 2 Mar 04, 2022
本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。

【关于 NLP】那些你不知道的事 作者:杨夕、芙蕖、李玲、陈海顺、twilight、LeoLRH、JimmyDU、艾春辉、张永泰、金金金 介绍 本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。 目录架构 一、【

1.4k Dec 30, 2022
Reading Wikipedia to Answer Open-Domain Questions

DrQA This is a PyTorch implementation of the DrQA system described in the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions. Quick Link

Facebook Research 4.3k Jan 01, 2023
A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. X-Ray supports 18 languages.

WordDumb A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. Languages X-Ray supp

172 Dec 29, 2022