A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models

Overview

wav2vec-toolkit

A collection of scripts to preprocess ASR datasets and finetune language-specific Wav2Vec2 XLSR models

This repository accompanies the 🤗 HuggingFace Community Paper on finetuning Wav2Vec2 XLSR for low-resource languages [link]

How to contribute

(Mostly identical to the huggingface/datasets contributing guide)

  1. Fork the repository by clicking on the 'Fork' button on the repository's page. This creates a copy of the code under your GitHub user account.

  2. Clone your fork to your local disk, and add the base repository as a remote:

    git clone [email protected]:<your Github handle>/wav2vec-toolkit.git
    cd wav2vec-toolkit
    git remote add upstream https://github.com/anton-l/wav2vec-toolkit.git
  3. Create a new branch to hold your development changes:

    git checkout -b a-descriptive-name-for-my-changes

    do not work on the master branch.

  4. Set up a development environment by running the following command in a virtual environment:

    pip install -e ".[dev]"

    (If wav2vec-toolkit was already installed in the virtual environment, remove it with pip uninstall wav2vec_toolkit before reinstalling it in editable mode with the -e flag.)

  5. Develop the features on your branch.

  6. Format your code. Run black and isort so that your newly added files look nice with the following command:

    black --line-length 119 --target-version py36 src scripts
    isort src scripts
  7. Once you're happy with your implementation, add your changes and make a commit to record your changes locally:

    git add .
    git commit

    It is a good idea to sync your copy of the code with the original repository regularly. This way you can quickly account for changes:

    git fetch upstream
    git rebase upstream/main

    Push the changes to your account using:

    git push -u origin a-descriptive-name-for-my-changes
  8. Once you are satisfied, go the webpage of your fork on GitHub. Click on "Pull request" to send your to the project maintainers for review.

Owner
Anton Lozhkov
Machine Learning Engineer @ Embedika
Anton Lozhkov
Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit".

Patience-based Early Exit Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit". NEWS: We now have a better and tidier i

Kevin Canwen Xu 54 Jan 04, 2023
Exploring dimension-reduced embeddings

sleepwalk Exploring dimension-reduced embeddings This is the code repository. See here for the Sleepwalk web page. License and disclaimer This program

S. Anders's research group at ZMBH 91 Nov 29, 2022
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.6k Dec 27, 2022
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
PyJPBoatRace: Python-based Japanese boatrace tools 🚤

pyjpboatrace :speedboat: provides you with useful tools for data analysis and auto-betting for boatrace.

5 Oct 29, 2022
中文問句產生器;使用台達電閱讀理解資料集(DRCD)

Transformer QG on DRCD The inputs of the model refers to we integrate C and A into a new C' in the following form. C' = [c1, c2, ..., [HL], a1, ..., a

Philip 1 Oct 22, 2021
NLP project that works with news (NER, context generation, news trend analytics)

СоАвтор СоАвтор – платформа и открытый набор инструментов для редакций и журналистов-фрилансеров, который призван сделать процесс создания контента ма

38 Jan 04, 2023
CATs: Semantic Correspondence with Transformers

CATs: Semantic Correspondence with Transformers For more information, check out the paper on [arXiv]. Training with different backbones and evaluation

74 Dec 10, 2021
CYGNUS, the Cynical AI, combines snarky responses with uncanny aggression.

New & (hopefully) Improved CYGNUS with several API updates, user updates, and online/offline operations added!!!

Simran Farrukh 0 Mar 28, 2022
A simple Speech Emotion Recognition (SER) API created using Flask and running in a Docker container.

keyword_searching Steps to use this Python scripts: (1)Paste this script into the file folder containing the PDF files you need to search from; (2)Thi

2 Nov 11, 2022
leaking paid token generator that was a shit lmao for 100$ haha

Discord-Token-Generator-Leaked leaking paid token generator that was a shit lmao for 100$ he selling it for 100$ wth here the code enjoy don't forget

Keevo 5 Apr 15, 2022
Local cross-platform machine translation GUI, based on CTranslate2

DesktopTranslator Local cross-platform machine translation GUI, based on CTranslate2 Download Windows Installer You can either download a ready-made W

Yasmin Moslem 29 Jan 05, 2023
Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time.

Wordle_Bot Python bot created with Selenium that can guess the daily Wordle word correct 96.8% of the time. It will log onto the wordle website and en

Lucas Polidori 15 Dec 11, 2022
A library that integrates huggingface transformers with the world of fastai, giving fastai devs everything they need to train, evaluate, and deploy transformer specific models.

blurr A library that integrates huggingface transformers with version 2 of the fastai framework Install You can now pip install blurr via pip install

ohmeow 253 Dec 31, 2022
API for the GPT-J language model 🦜. Including a FastAPI backend and a streamlit frontend

gpt-j-api 🦜 An API to interact with the GPT-J language model. You can use and test the model in two different ways: Streamlit web app at http://api.v

Víctor Gallego 276 Dec 31, 2022
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
The RWKV Language Model

RWKV-LM We propose the RWKV language model, with alternating time-mix and channel-mix layers: The R, K, V are generated by linear transforms of input,

PENG Bo 877 Jan 05, 2023
中文无监督SimCSE Pytorch实现

A PyTorch implementation of unsupervised SimCSE SimCSE: Simple Contrastive Learning of Sentence Embeddings 1. 用法 无监督训练 python train_unsup.py ./data/ne

99 Dec 23, 2022
Text Classification Using LSTM

Text classification is the task of assigning a set of predefined categories to free text. Text classifiers can be used to organize, structure, and categorize pretty much anything. For example, new ar

KrishArul26 3 Jan 03, 2023
Code for paper "Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features"

Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features Train python main.py --dataset brazil-flights C

wang zhang 0 Jun 28, 2022