NAACL 2022: MCSE: Multimodal Contrastive Learning of Sentence Embeddings

Related tags

Text Data & NLPMCSE
Overview

MCSE: Multimodal Contrastive Learning of Sentence Embeddings

This repository contains code and pre-trained models for our NAACL-2022 paper MCSE: Multimodal Contrastive Learning of Sentence Embeddings. If you find this reposity useful, please consider citing our paper.

Contact: Miaoran Zhang ([email protected])

Pre-trained Models & Results

Model Avg. STS
flickr-mcse-bert-base-uncased [Google Drive] 77.70
flickr-mcse-roberta-base [Google Drive] 78.44
coco-mcse-bert-base-uncased [Google Drive] 77.08
coco-mcse-roberta-base [Google Drive] 78.17

Note: flickr indicates that models are trained on wiki+flickr, and coco indicates that models are trained on wiki+coco.

Quickstart

Setup

  • Python 3.9.5
  • Pytorch 1.7.1
  • Install other packages:
pip install -r requirements.txt

Data Preparation

Please organize the data directory as following:

REPO ROOT
|
|--data    
|  |--wiki1m_for_simcse.txt  
|  |--flickr_random_captions.txt    
|  |--flickr_resnet.hdf5    
|  |--coco_random_captions.txt    
|  |--coco_resnet.hdf5  

Wiki1M

wget https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt

Flickr30k & MS-COCO
You can either download the preprocessed data we used:
(annotation sources: flickr30k-entities and coco).

Or preprocess the data by yourself (take Flickr30k as an example):

  1. Download the flickr30k-entities.
  2. Request access to the flickr-images from here. Note that the use of the images much abide by the Flickr Terms of Use.
  3. Run script:
    unzip ${path_to_flickr-entities}/annotations.zip
    
    python preprocess/prepare_flickr.py \
        --flickr_entities_dir ${path_to_flickr-entities}  \  
        --flickr_images_dir ${path_to_flickr-images} \
        --output_dir data/
        --batch_size 32
    

Train & Evaluation

  1. Prepare the senteval datasets for evaluation:

    cd SentEval/data/downstream/
    bash download_dataset.sh
    
  2. Run scripts:

    # For example:  (more examples are given in scripts/.)
    sh scripts/run_wiki_flickr.sh

    Note: In the paper we run experiments with 5 seeds (0,1,2,3,4). You can find the detailed parameter settings in Appendix.

Acknowledgements

  • The extremely clear and well organized codebase: SimCSE
  • SentEval toolkit
Owner
Saarland University Spoken Language Systems Group
Saarland University Spoken Language Systems Group
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.

Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da

Jeff Johannsen 3 Nov 27, 2022
CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N

Meta Research 29 Nov 30, 2022
Search Git commits in natural language

NaLCoS - NAtural Language COmmit Search Search commit messages in your repository in natural language. NaLCoS (NAtural Language COmmit Search) is a co

Pushkar Patel 50 Mar 22, 2022
A simple version of DeTR

DeTR-Lite A simple version of DeTR Before you enjoy this DeTR-Lite The purpose of this project is to allow you to learn the basic knowledge of DeTR. P

Jianhua Yang 11 Jun 13, 2022
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

Maksim Terpilowski 49 Dec 30, 2022
Code and data accompanying Natural Language Processing with PyTorch

Natural Language Processing with PyTorch Build Intelligent Language Applications Using Deep Learning By Delip Rao and Brian McMahan Welcome. This is a

Joostware 1.8k Jan 01, 2023
This program do translate english words to portuguese

Python-Dictionary This program is used to translate english words to portuguese. Web-Scraping This program use BeautifulSoap to make web scraping, so

João Assalim 1 Oct 10, 2022
Chatbot with Pytorch, Python & Nextjs

Installation Instructions Make sure that you have Python 3, gcc, venv, and pip installed. Clone the repository $ git clone https://github.com/sahr

Rohit Sah 0 Dec 11, 2022
Autoregressive Entity Retrieval

The GENRE (Generative ENtity REtrieval) system as presented in Autoregressive Entity Retrieval implemented in pytorch. @inproceedings{decao2020autoreg

Meta Research 611 Dec 16, 2022
Dope Wars game engine on StarkNet L2 roll-up

RYO Dope Wars game engine on StarkNet L2 roll-up. What TI-83 drug wars built as smart contract system. Background mechanism design notion here. Initia

104 Dec 04, 2022
SpikeX - SpaCy Pipes for Knowledge Extraction

SpikeX is a collection of pipes ready to be plugged in a spaCy pipeline. It aims to help in building knowledge extraction tools with almost-zero effort.

Erre Quadro Srl 384 Dec 12, 2022
This repository contains helper functions which can help you generate additional data points depending on your NLP task.

NLP Albumentations For Data Augmentation This repository contains helper functions which can help you generate additional data points depending on you

Aflah 6 May 22, 2022
Course project of [email protected]

NaiveMT Prepare Clone this repository git clone [email protected]:Poeroz/NaiveMT.git

Poeroz 2 Apr 24, 2022
Chatbot for the Chatango messaging platform

BroiestBot The baddest bot in the game right now. Uses the ch.py framework for joining Chantango rooms and responding to user messages. Commands If a

Todd Birchard 3 Jan 17, 2022
Coreference resolution for English, French, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, Explosion AI 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 French 1.2.3 German 1.2

Explosion 70 Dec 12, 2022
NeuralQA: A Usable Library for Question Answering on Large Datasets with BERT

NeuralQA: A Usable Library for (Extractive) Question Answering on Large Datasets with BERT Still in alpha, lots of changes anticipated. View demo on n

Victor Dibia 220 Dec 11, 2022
The model is designed to train a single and large neural network in order to predict correct translation by reading the given sentence.

Neural Machine Translation communication system The model is basically direct to convert one source language to another targeted language using encode

Nishant Banjade 7 Sep 22, 2022
(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.

BERT Convolutions Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains expe

mlpc-ucsd 21 Jul 18, 2022
Natural Language Processing Tasks and Examples.

Natural Language Processing Tasks and Examples With the advancement of A.I. technology in recent years, natural language processing technology has bee

Soohwan Kim 53 Dec 20, 2022
Index different CKAN entities in Solr, not just datasets

ckanext-sitesearch Index different CKAN entities in Solr, not just datasets Requirements This extension requires CKAN 2.9 or higher and Python 3 Featu

Open Knowledge Foundation 3 Dec 02, 2022