BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents

Related tags

Text Data & NLPbros
Overview

BROS

Introduction

BROS (BERT Relying On Spatiality) is a pre-trained language model focusing on text and layout for better key information extraction from documents. Given the OCR results of the document image, which are text and bounding box pairs, it can perform various key information extraction tasks, such as extracting an ordered item list from receipts. For more details, please refer to our paper:

BROS: A Pre-trained Language Model Focusing on Text and Layout for Better Key Information Extraction from Documents
Teakgyu Hong, Donghyun Kim, Mingi Ji, Wonseok Hwang, Daehyun Nam, Sungrae Park
AAAI 2022 (to appear)

Pre-trained models

name # params Hugging Face - Models
bros-base-uncased < 110M naver-clova-ocr/bros-base-uncased
bros-large-uncased < 340M naver-clova-ocr/bros-large-uncased

Model usage

The example code below is written with reference to LayoutLM.

import torch
from bros import BrosTokenizer, BrosModel


tokenizer = BrosTokenizer.from_pretrained("naver-clova-ocr/bros-base-uncased")
model = BrosModel.from_pretrained("naver-clova-ocr/bros-base-uncased")


width, height = 1280, 720

words = ["to", "the", "moon!"]
quads = [
    [638, 451, 863, 451, 863, 569, 638, 569],
    [877, 453, 1190, 455, 1190, 568, 876, 567],
    [632, 566, 1107, 566, 1107, 691, 632, 691],
]

bbox = []
for word, quad in zip(words, quads):
    n_word_tokens = len(tokenizer.tokenize(word))
    bbox.extend([quad] * n_word_tokens)

cls_quad = [0.0] * 8
sep_quad = [width, height] * 4
bbox = [cls_quad] + bbox + [sep_quad]

encoding = tokenizer(" ".join(words), return_tensors="pt")
input_ids = encoding["input_ids"]
attention_mask = encoding["attention_mask"]

bbox = torch.tensor([bbox])
bbox[:, :, [0, 2, 4, 6]] = bbox[:, :, [0, 2, 4, 6]] / width
bbox[:, :, [1, 3, 5, 7]] = bbox[:, :, [1, 3, 5, 7]] / height

outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask)
last_hidden_state = outputs.last_hidden_state

print("- last_hidden_state")
print(last_hidden_state)
print()
print("- last_hidden_state.shape")
print(last_hidden_state.shape)

Result

- last_hidden_state
tensor([[[-0.0342,  0.2487, -0.2819,  ...,  0.1495,  0.0218,  0.0484],
         [ 0.0792, -0.0040, -0.0127,  ..., -0.0918,  0.0810,  0.0419],
         [ 0.0808, -0.0918,  0.0199,  ..., -0.0566,  0.0869, -0.1859],
         [ 0.0862,  0.0901,  0.0473,  ..., -0.1328,  0.0300, -0.1613],
         [-0.2925,  0.2539,  0.1348,  ...,  0.1988, -0.0148, -0.0982],
         [-0.4160,  0.2135, -0.0390,  ...,  0.6908, -0.2985,  0.1847]]],
       grad_fn=
   
    )

- last_hidden_state.shape
torch.Size([1, 6, 768])

   

Fine-tuning examples

Please refer to docs/finetuning_examples.md.

Acknowledgements

We referenced the code of LayoutLM when implementing BROS in the form of Hugging Face - transformers.
In this repository, we used two public benchmark datasets, FUNSD and SROIE.

License

Copyright 2022-present NAVER Corp.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
A fast, efficient universal vector embedding utility package.

Magnitude: a fast, simple vector embedding utility library A feature-packed Python package and vector storage file format for utilizing vector embeddi

Plasticity 1.5k Jan 02, 2023
STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs

STonKGs STonKGs is a Sophisticated Transformer that can be jointly trained on biomedical text and knowledge graphs. This multimodal Transformer combin

STonKGs 27 Aug 11, 2022
Twitter-Sentiment-Analysis - Analysis of twitter posts' positive and negative score.

Twitter-Sentiment-Analysis The hands-on project is in Python 3 Programming class offered by University of Michigan via Coursera. The task is to build

Eszter Pai 1 Jan 03, 2022
This program do translate english words to portuguese

Python-Dictionary This program is used to translate english words to portuguese. Web-Scraping This program use BeautifulSoap to make web scraping, so

João Assalim 1 Oct 10, 2022
This library is testing the ethics of language models by using natural adversarial texts.

prompt2slip This library is testing the ethics of language models by using natural adversarial texts. This tool allows for short and simple code and v

9 Dec 28, 2021
Chinese NER with albert/electra or other bert descendable model (keras)

Chinese NLP (albert/electra with Keras) Named Entity Recognization Project Structure ./ ├── NER │   ├── __init__.py │   ├── log

2 Nov 20, 2022
Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Zhenhailong Wang 2 Jul 15, 2022
LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating

LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating (Dataset) The dataset is from Amazon Review Data (2018)

Immanuvel Prathap S 1 Jan 16, 2022
🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

Hugging Face 15k Jan 02, 2023
The guide to tackle with the Text Summarization

The guide to tackle with the Text Summarization

Takahiro Kubo 1.2k Dec 30, 2022
🤕 spelling exceptions builder for lazy people

🤕 spelling exceptions builder for lazy people

Vlad Bokov 3 May 12, 2022
Code for Text Prior Guided Scene Text Image Super-Resolution

Code for Text Prior Guided Scene Text Image Super-Resolution

82 Dec 26, 2022
Faster, modernized fork of the language identification tool langid.py

py3langid py3langid is a fork of the standalone language identification tool langid.py by Marco Lui. Original license: BSD-2-Clause. Fork license: BSD

Adrien Barbaresi 12 Nov 05, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
An example project using OpenPrompt under pytorch-lightning for prompt-based SST2 sentiment analysis model

pl_prompt_sst An example project using OpenPrompt under the framework of pytorch-lightning for a training prompt-based text classification model on SS

Zhiling Zhang 5 Oct 21, 2022
基于百度的语音识别,用python实现,pyaudio+pyqt

Speech-recognition 基于百度的语音识别,python3.8(conda)+pyaudio+pyqt+baidu-aip 百度有面向python

J-L 1 Jan 03, 2022
📔️ Generate a text-based journal from a template file.

JGen 📔️ Generate a text-based journal from a template file. Contents Getting Started Example Overview Usage Details Reserved Keywords Gotchas Getting

Harrison Broadbent 21 Sep 25, 2022
Almost State-of-the-art Text Generation library

Ps: we are adding transformer model soon Text Gen 🐐 Almost State-of-the-art Text Generation library Text gen is a python library that allow you build

Emeka boris ama 63 Jun 24, 2022