This repository contains all the source code that is needed for the project : An Efficient Pipeline For Bloom’s Taxonomy Using Natural Language Processing and Deep Learning

Overview

Pipeline For NLP with Bloom's Taxonomy Using Improved Question Classification and Question Generation using Deep Learning

This repository contains all the source code that is needed for the Project : An Efficient Pipeline For Bloom’s Taxonomy with Question Generation Using Natural Language Processing and Deep Learning.

Outline :

An examination assessment undertaken by educational institutions is an essential process, since it is one of the fundamental steps to determine a student’s progress and achievements for a distinct subject or course. To meet learning objectives, the questions must be presented by the topics, that are mastered by the students. Generation of examination questions from an extensive amount of available text material presents some complications. The current availability of huge lengths of textbooks makes it a slow and time-consuming task for a faculty when it comes to manually annotate good quality of questions keeping in mind, they are well balanced as well. As a result, faculties rely on Bloom’s taxonomy's cognitive domain, which is a popular framework, for assessing students’ intellectual abilities. Therefore, the primary goal of this research paper is to demonstrate an effective pipeline for the generation of questions using deep learning from a given text corpus. We also employ various neural network architectures to classify questions into the cognitive domain of different levels of Bloom’s taxonomy using deep learning, to derive questions and judge the complexity and specificity of those questions. The findings from this study showed that the proposed pipeline is significant in generating the questions, which were equally similar concerning manually annotated questions and classifying questions from multiple domains based on Bloom’s taxonomy.

Main Proposed Pipeline Layout :

Used Datasets

  • Squad Dataset 2.0 - Used In Question Generation Module. Released in 2018, has over 150,000 question-answer pairs.

  • "Yahya et al, (2012)" Introduced Dataset - Dataset Used in Question Classification Module.Consists of around 600 open-ended questions, covering a wide variety of questions belonging to the different levels of the cognitive domain. Original Dataset required some basic pre-processing and then manually converted into dataframe. Check out main paper cited here.

  • Quora Question Pairs Dataset- Dataset Used in Case study of computing semantic similarity between generated questions from T5 Transformer and manually annotated questions from survey form.

Question Generation Module:

The dataset being used for the question generation is Squad (The Stanford Question Answering Dataset) 2.0 Dataset. Squad 2.0 is an extension of the original Squad V1.1 that was published in 2016 by Stanford University.

In this paper, we have implemented T5 Transformer, which is then fine-tuned using PyTorch lightning and training it on the Squad 2.0 dataset. T5 is essentially an encoder-decoder model which takes in all NLP problems and has them converted to a text-to-text format.

Table 1

Passage Answer Context
The term health is very frequently used by everybody. How do we define it? Health does not simply mean "absence of disease" or "physical fitness". It could be defined as a state of complete physical, mental and social well-being. When people are healthy, they are more efficient at work. This increases productivity and brings economic prosperity. Health also increases longevity of people and reduces infant and maternal mortality. When the functioning of one or more organs or systems of the body is adversely affected, characterized by appearance of various signs and symptoms,we say that we are not healthy, i.e., we have a disease. Diseases can be broadly grouped into infectious and non-infectious. Diseases which are easily transmitted from one person to another, are called infectious diseases.' Easily transmitted from one person to another
Proteins are the most abundant biomolecules of the living system. Chief sources of proteins are milk, cheese, pulses, peanuts, fish, meat, etc. They occur in every part of the body and form the fundamental basis of structure and functions of life. They are also required for growth and maintenance of the body. The word protein is derived from Greek word, “proteios” which means primary or of prime importance. Greek Word

Table 1 shows the passages that we have input it into the model and the answers that we want the questions to be generated. We have taken these passages from various high school level books.

Table 2

Answer Context Easily transmitted from one person to another Greek Word
Questions Generated How are infectious diseases defined? What does the word protein come from?
Questions Received What do you mean by infectious disease? What is "proteios"? From which language was it derived from?

As you can see in table 2, the questions generated row are the questions generated as per the answer context by our model. Correspondingly, the Questions Received are the ones that we obtained from circulating a survey that contained the same passage and context.

Results

After training, we observed a steady decrease in training loss Fig. 3. The validation loss fluctuated and has been observed in Fig. 4. Note that due to fewer computation resources, we could train for only a limited amount of time, and hence the fluctuations in validation loss.

  • Training Loss = 0.070
  • Validation Loss = 2.39

Question Classification Module :

A deep learning-based model for multi class classification which takes in a text as input and tries to classify a certain category out of multiple categories in coginitive domain of bloom's taxonomy.

Dataset Used : Yahaa et all (2012)

Model Pipeline :

Model Architecture :

Results :

Summarised Evaluation :

S.No Model Optimizer Accuracy Loss Dropout
1 ConvNet 1D+ 2 Bidirectional LSTMs Layers Adam 80.83 0.6842
2 ConvNet 1D+ 2 Bidirectional LSTMs Layers RMSProp 80.00 1.50
3 ConvNet 1D+ 2 Bidirectional LSTMs Layers Adam with ClipNorm=1.25 83.33 0.86
4 ConvNet 1D+ 2 Bidirectional LSTMs Layers RMSProp with ClipNorm=1.25 79.17 2.10
5 ConvNet 1D+ 2 Bidirectional LSTMs Layers Adam 86.67 0.59 Recurrent Dropout=0.1
6 ConvNet 1D+ 2 Bidirectional LSTMs Layers RMSprop 78.83 2.54 Recurrent Dropout=0.1
7 ConvNet 1D+ 2 Bidirectional LSTMs Layers Adam with ClipNorm=1.25 85.83 0.56 Recurrent Dropout=0.1
8 ConvNet 1D+ 2 Bidirectional LSTMs Layers RMSprop with ClipNorm=1.25 75.83 0.76 Recurrent Dropout=0.1
9 ConvNet 1D+ 2 Bidirectional LSTMs Layers + GloVe 100-D Adam With ClipNorm=1.25 73.33 1.28
10 ConvNet 1D+ 2 Bidirectional LSTMs Layers + GloVe 300-D Adam With ClipNorm=1.25 75.83 0.88
11 ConvNet 1D+ 2 Bidirectional LSTMs Layers + GloVe 100-D RMSprop With ClipNorm=1.25 73.33 2.31
12 ConvNet 1D+ 2 Bidirectional LSTMs Layers + GloVe 300-D RMSprop With ClipNorm=1.25 80.00 1.12

The Best Performance was exhibited by the following dense neural network : ConvNet 1D with 2 Bidirectional LSTMs Layers ,along with Adam optimizer and recurrent dropout =0.1 as regulariser.

Following Results were obtained :

  • Accuracy : 86.67 %
  • Loss : 0.59

Accuracy vs Loss Plot :

Siamese Neural Network for Computing Sentence Similarity – A Case Study :

With a thorough analysis of the outputs, i.e., questions, generated from the proposed model,a case study was done to evaluate how much the generated questions are semantically similar to the questions if annotated manually. For this evaluation, we considered an effective pipeline of Siamese neural networks. This study was done in order to explore insights about the effectiveness of our proposed pipeline – how much our model is efficient to generate questions when compared to the manual annotation of the questions which requires comparatively more hard work and time.

Model Architecture :

Generated Questions Manually Annotated Questions Context Similarity Score
Why is health more efficient at work? How does health affect efficiency at work? Increases Productivity And Brings Economic Prosperity 0.4464
What is the health of people more efficient at work? What are the outcomes of being more efficient at work as a result of good health? Increases Productivity And Brings Economic Prosperity 0.4811
What is the term infectious disease? What do you mean by infectious disease? Easily Transmitted From One Person To Another 0.3505
How are infectious diseases defined? Define infectious disease. Easily Transmitted From One Person To Another 0.2489
According to classical electromagnetic theory, an accelerating charged particle does what ? According to electromagnetic theory what happens when a charged particle accelerates ? Emits Radiation In The Form Of Electromagnetic Waves 0.2074
What does the theory of an accelerating charged particle imply ? What does the classical electromagnetic theory state ? Emits Radiation In The Form Of Electromagnetic Waves 0.0474
What was the Harappans's strategy of sending expeditions to ? What was the primary reason for settlements and expeditions as seen from Harappans's ? Strategy For Procuring Raw Materials 0.4222
What was the idea behind sending expeditions to Rajasthan ? Why did the Harappans's send expeditions to areas in Rajasthan ? Strategy For Procuring Raw Materials 0.6870
What was a feature of the Ganeshwar culture ? What was the distinctive feature of the Ganeshwar culture ? Non-Harappan Pottery 0.6439
What type of artefacts are from the Ganeshwar culture ? What kind of artefacts are from Ganeshwar culture ? Non-Harappan Pottery 0.4309
Proteins form the basis of what? What is the significance of proteins ? Function Of Life 0.1907
What are proteins the fundamental basis of ? What does protein form along with fundamental basis of structure ? Function Of Life 0.1775

The above analysis is a sample from a set of recorded observations evaluated by our network. This clearly indicates the depth of similarity score between generated questions from the transformer and manually annotated questions from the survey.

Accuracy vs Loss Plot :

Owner
Rohan Mathur
3rd Year Undergrad | Data Science Enthusiast
Rohan Mathur
a test times augmentation toolkit based on paddle2.0.

Patta Image Test Time Augmentation with Paddle2.0! Input | # input batch of images / / /|\ \ \ # apply

AgentMaker 110 Dec 03, 2022
TLA - Twitter Linguistic Analysis

TLA - Twitter Linguistic Analysis Tool for linguistic analysis of communities TLA is built using PyTorch, Transformers and several other State-of-the-

Tushar Sarkar 47 Aug 14, 2022
Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022)

SyntaxGen Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022) In this repo, we upload all the scripts for this work. Due to siz

Zhuosheng Zhang 3 Jun 13, 2022
Textlesslib - Library for Textless Spoken Language Processing

textlesslib Textless NLP is an active area of research that aims to extend NLP t

Meta Research 379 Dec 27, 2022
[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

Cambridge Language Technology Lab 61 Dec 10, 2022
Just Another Telegram Ai Chat Bot Written In Python With Pyrogram.

OkaeriChatBot Just another Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher.

Wahyusaputra 2 Dec 23, 2021
Japanese NLP Library

Japanese NLP Library Back to Home Contents 1 Requirements 1.1 Links 1.2 Install 1.3 History 2 Libraries and Modules 2.1 Tokenize jTokenize.py 2.2 Cabo

Pulkit Kathuria 144 Dec 27, 2022
ChatBotProyect - This is an unfinished project about a simple chatbot.

chatBotProyect This is an unfinished project about a simple chatbot. (union_todo.ipynb) Reminders for the project: Find why one of the vectorizers fai

Tomás 0 Jul 24, 2022
A python script that will use hydra to get user and password to login to ssh, ftp, and telnet

Hydra-Auto-Hack A python script that will use hydra to get user and password to login to ssh, ftp, and telnet Project Description This python script w

2 Jan 16, 2022
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Hiroki Nakayama 1.5k Dec 05, 2022
Weird Sort-and-Compress Thing

Weird Sort-and-Compress Thing A weird integer sorting + compression algorithm inspired by a conversation with Luthingx (it probably already exists by

Douglas 1 Jan 03, 2022
使用pytorch+transformers复现了SimCSE论文中的有监督训练和无监督训练方法

SimCSE复现 项目描述 SimCSE是一种简单但是很巧妙的NLP对比学习方法,创新性地引入Dropout的方式,对样本添加噪声,从而达到对正样本增强的目的。 该框架的训练目的为:对于batch中的每个样本,拉近其与正样本之间的距离,拉远其与负样本之间的距离,使得模型能够在大规模无监督语料(也可以

58 Dec 20, 2022
ThinkTwice: A Two-Stage Method for Long-Text Machine Reading Comprehension

ThinkTwice ThinkTwice is a retriever-reader architecture for solving long-text machine reading comprehension. It is based on the paper: ThinkTwice: A

Walle 4 Aug 06, 2021
NLP command-line assistant powered by OpenAI

NLP command-line assistant powered by OpenAI

Axel 16 Dec 09, 2022
An example project using OpenPrompt under pytorch-lightning for prompt-based SST2 sentiment analysis model

pl_prompt_sst An example project using OpenPrompt under the framework of pytorch-lightning for a training prompt-based text classification model on SS

Zhiling Zhang 5 Oct 21, 2022
Unofficial Python library for using the Polish Wordnet (plWordNet / Słowosieć)

Polish Wordnet Python library Simple, easy-to-use and reasonably fast library for using the Słowosieć (also known as PlWordNet) - a lexico-semantic da

Max Adamski 12 Dec 23, 2022
Multilingual finetuning of Machine Translation model on low-resource languages. Project for Deep Natural Language Processing course.

Low-resource-Machine-Translation This repository contains the code for the project relative to the course Deep Natural Language Processing. The goal o

Andrea Cavallo 3 Jun 22, 2022
SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Jan 07, 2023
File-based TF-IDF: Calculates keywords in a document, using a word corpus.

File-based TF-IDF Calculates keywords in a document, using a word corpus. Why? Because I found myself with hundreds of plain text files, with no way t

Jakob Lindskog 1 Feb 11, 2022
PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer

Cross-Covariance Image Transformer (XCiT) PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer L

Facebook Research 605 Jan 02, 2023