ThinkTwice: A Two-Stage Method for Long-Text Machine Reading Comprehension

Overview

ThinkTwice

ThinkTwice is a retriever-reader architecture for solving long-text machine reading comprehension. It is based on the paper: ThinkTwice: A Two-Stage Method for Long-Text Machine Reading Comprehension. Authors are Mengxing Dong, Bowei Zou, Jin Qian, Rongtao Huang and Yu Hong from Soochow University and Institute for Infocomm Research. The paper will be published in NLPCC 2021 soon.

Contents

Background

Our idea is mainly inspired by the way humans think: We first read a lengthy document and remain several slices which are important to our task in our mind; then we are gonna capture the final answer within this limited information.

The goals for this repository are:

  1. A complete code for NewsQA. This repo offers an implement for dealing with long text MRC dataset NewsQA; you can also try this method on other datsets like TriviaQA, Natural Questions yourself.
  2. A comparison description. The performance on ThinkTwice has been listed in the paper.
  3. A public space for advice. You are welcomed to propose an issue in this repo.

Requirements

Clone this repo at your local server. Install necessary libraries listed below.

git clone [email protected]:Walle1493/ThinkTwice.git
pip install requirements.txt

You may install several libraries on yourself.

Dataset

You need to prepare data in a squad2-like format. Since NewsQA (click here seeing more) is similar to SQuAD-2.0, we don't offer the script in this repo. The demo data format is showed below:

"version": "1",
"data": [
    {
        "type": "train",
        "title": "./cnn/stories/42d01e187213e86f5fe617fe32e716ff7fa3afc4.story",
        "paragraphs": [
            {
                "context": "NEW DELHI, India (CNN) -- A high court in northern India on Friday acquitted a wealthy...",
                "qas": [
                    {
                        "question": "What was the amount of children murdered?",
                        "id": "./cnn/stories/42d01e187213e86f5fe617fe32e716ff7fa3afc4.story01",
                        "answers": [
                            {
                                "answer_start": 294,
                                "text": "19"
                            }
                        ],
                        "is_impossible": false
                    },
                    {
                        "question": "When was Pandher sentenced to death?",
                        "id": "./cnn/stories/42d01e187213e86f5fe617fe32e716ff7fa3afc4.story02",
                        "answers": [
                            {
                                "answer_start": 261,
                                "text": "February"
                            }
                        ],
                        "is_impossible": false
                    }
                ]
            }
        ]
    }
]

P.S.: You are supposed to make a change when dealing with other datasets like TriviaQA or Natural Questions, because we split passages by '\n' character in NewsQA, while not all the same in other datasets.

Train

The training step (including test module) depends mainly on these parameters. We trained our two-stage model on 4 GPUs with 12G 1080Ti in 60 hours.

python code/main.py \
  --do_train \
  --do_eval \
  --eval_test \
  --model bert-base-uncased \
  --train_file ~/Data/newsqa/newsqa-squad2-dataset/squad-newsqa-train.json \
  --dev_file ~/Data/newsqa/newsqa-squad2-dataset/squad-newsqa-dev.json \
  --test_file ~/Data/newsqa/newsqa-squad2-dataset/squad-newsqa-test.json \
  --train_batch_size 256 \
  --train_batch_size_2 24 \
  --eval_batch_size 32  \
  --learning_rate 2e-5 \
  --num_train_epochs 1 \
  --num_train_epochs_2 3 \
  --max_seq_length 128 \
  --max_seq_length_2 512 \
  --doc_stride 128 \
  --eval_metric best_f1 \
  --output_dir outputs/newsqa/retr \
  --output_dir_2 outputs/newsqa/read \
  --data_binary_dir data_binary/retr \
  --data_binary_dir_2 data_binary/read \
  --version_2_with_negative \
  --do_lower_case \
  --top_k 5 \
  --do_preprocess \
  --do_preprocess_2 \
  --first_stage \

In order to improve efficiency, we store data and model generated during training in a binary format. Specifically, when you switch on do_preprocess, the converted data in the first stage will be stored in the directory data_binary, next time you can switch off this option to directly load data. As well, do_preprocess aims at the data in the second stage, and first_stage is for the retriever model. The model and metrics result can be found in the directory output/newsqa after training.

License

Soochow University © Mengxing Dong

Owner
Walle
Walle
Official Stanford NLP Python Library for Many Human Languages

Official Stanford NLP Python Library for Many Human Languages

Stanford NLP 6.4k Jan 02, 2023
Auto_code_complete is a auto word-completetion program which allows you to customize it on your needs

auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the model for this program is one of the deep-learning NLP(Natural Language Process) model struc

RUO 2 Feb 22, 2022
Dé op-de-vlucht Pieton vertaler. Wereldwijd gebruikt door meer dan 1.000+ succesvolle bedrijven!

Dé op-de-vlucht Pieton vertaler. Wereldwijd gebruikt door meer dan 1.000+ succesvolle bedrijven!

Lau 1 Dec 17, 2021
ZUNIT - Toward Zero-Shot Unsupervised Image-to-Image Translation

ZUNIT Dependencies you can install all the dependencies by pip install -r requirements.txt Datasets Download CUB dataset. Unzip the birds.zip at ./da

Chen Yuanqi 9 Jun 24, 2022
VampiresVsWerewolves - Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition

VampiresVsWerewolves Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition. Our Algorithm finish

Shawn 1 Jan 21, 2022
An open collection of annotated voices in Japanese language

声庭 (Koniwa): オープンな日本語音声とアノテーションのコレクション Koniwa (声庭): An open collection of annotated voices in Japanese language 概要 Koniwa(声庭)は利用・修正・再配布が自由でオープンな音声とアノテ

Koniwa project 32 Dec 14, 2022
NewsMTSC: (Multi-)Target-dependent Sentiment Classification in News Articles

NewsMTSC: (Multi-)Target-dependent Sentiment Classification in News Articles NewsMTSC is a dataset for target-dependent sentiment classification (TSC)

Felix Hamborg 79 Dec 30, 2022
A simple word search made in python

Word Search Puzzle A simple word search made in python Usage $ python3 main.py -h usage: main.py [-h] [-c] [-f FILE] Generates a word s

Magoninho 16 Mar 10, 2022
Installation, test and evaluation of Scribosermo speech-to-text engine

Scribosermo STT Setup Scribosermo is a LGPL licensed, open-source speech recognition engine to "Train fast Speech-to-Text networks in different langua

Florian Quirin 3 Jun 20, 2022
Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP This repository maintains some utility scripts for retrieving and preprocessing Wikipedia text

Masatoshi Suzuki 44 Oct 19, 2022
DaCy: The State of the Art Danish NLP pipeline using SpaCy

DaCy: A SpaCy NLP Pipeline for Danish DaCy is a Danish preprocessing pipeline trained in SpaCy. At the time of writing it has achieved State-of-the-Ar

Kenneth Enevoldsen 71 Jan 06, 2023
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

Max Woolf 4.8k Dec 30, 2022
Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Dual Path Learning for Domain Adaptation of Semantic Segmentation Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Sema

27 Dec 22, 2022
The SVO-Probes Dataset for Verb Understanding

The SVO-Probes Dataset for Verb Understanding This repository contains the SVO-Probes benchmark designed to probe for Subject, Verb, and Object unders

DeepMind 20 Nov 30, 2022
DLO8012: Natural Language Processing & CSL804: Computational Lab - II

NATURAL-LANGUAGE-PROCESSING-AND-COMPUTATIONAL-LAB-II DLO8012: NLP & CSL804: CL-II [SEMESTER VIII] Syllabus NLP - Reference Books THE WALL MEGA SATISH

AMEY THAKUR 7 Apr 28, 2022
An algorithm that can solve the word puzzle Wordle with an optimal number of guesses on HARD mode.

WordleSolver An algorithm that can solve the word puzzle Wordle with an optimal number of guesses on HARD mode. How to use the program Copy this proje

Akil Selvan Rajendra Janarthanan 3 Mar 02, 2022
The NewSHead dataset is a multi-doc headline dataset used in NHNet for training a headline summarization model.

This repository contains the raw dataset used in NHNet [1] for the task of News Story Headline Generation. The code of data processing and training is available under Tensorflow Models - NHNet.

Google Research Datasets 31 Jul 15, 2022
This repo stores the codes for topic modeling on palliative care journals.

This repo stores the codes for topic modeling on palliative care journals. Data Preparation You first need to download the journal papers. bash 1_down

3 Dec 20, 2022
Flexible interface for high-performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra.

Flexible interface for high performance research using SOTA Transformers leveraging Pytorch Lightning, Transformers, and Hydra. What is Lightning Tran

Pytorch Lightning 581 Dec 21, 2022
Sequence-to-Sequence Framework in PyTorch

nmtpytorch allows training of various end-to-end neural architectures including but not limited to neural machine translation, image captioning and au

LIUM 395 Nov 21, 2022