ThinkTwice: A Two-Stage Method for Long-Text Machine Reading Comprehension

Overview

ThinkTwice

ThinkTwice is a retriever-reader architecture for solving long-text machine reading comprehension. It is based on the paper: ThinkTwice: A Two-Stage Method for Long-Text Machine Reading Comprehension. Authors are Mengxing Dong, Bowei Zou, Jin Qian, Rongtao Huang and Yu Hong from Soochow University and Institute for Infocomm Research. The paper will be published in NLPCC 2021 soon.

Contents

Background

Our idea is mainly inspired by the way humans think: We first read a lengthy document and remain several slices which are important to our task in our mind; then we are gonna capture the final answer within this limited information.

The goals for this repository are:

  1. A complete code for NewsQA. This repo offers an implement for dealing with long text MRC dataset NewsQA; you can also try this method on other datsets like TriviaQA, Natural Questions yourself.
  2. A comparison description. The performance on ThinkTwice has been listed in the paper.
  3. A public space for advice. You are welcomed to propose an issue in this repo.

Requirements

Clone this repo at your local server. Install necessary libraries listed below.

git clone [email protected]:Walle1493/ThinkTwice.git
pip install requirements.txt

You may install several libraries on yourself.

Dataset

You need to prepare data in a squad2-like format. Since NewsQA (click here seeing more) is similar to SQuAD-2.0, we don't offer the script in this repo. The demo data format is showed below:

"version": "1",
"data": [
    {
        "type": "train",
        "title": "./cnn/stories/42d01e187213e86f5fe617fe32e716ff7fa3afc4.story",
        "paragraphs": [
            {
                "context": "NEW DELHI, India (CNN) -- A high court in northern India on Friday acquitted a wealthy...",
                "qas": [
                    {
                        "question": "What was the amount of children murdered?",
                        "id": "./cnn/stories/42d01e187213e86f5fe617fe32e716ff7fa3afc4.story01",
                        "answers": [
                            {
                                "answer_start": 294,
                                "text": "19"
                            }
                        ],
                        "is_impossible": false
                    },
                    {
                        "question": "When was Pandher sentenced to death?",
                        "id": "./cnn/stories/42d01e187213e86f5fe617fe32e716ff7fa3afc4.story02",
                        "answers": [
                            {
                                "answer_start": 261,
                                "text": "February"
                            }
                        ],
                        "is_impossible": false
                    }
                ]
            }
        ]
    }
]

P.S.: You are supposed to make a change when dealing with other datasets like TriviaQA or Natural Questions, because we split passages by '\n' character in NewsQA, while not all the same in other datasets.

Train

The training step (including test module) depends mainly on these parameters. We trained our two-stage model on 4 GPUs with 12G 1080Ti in 60 hours.

python code/main.py \
  --do_train \
  --do_eval \
  --eval_test \
  --model bert-base-uncased \
  --train_file ~/Data/newsqa/newsqa-squad2-dataset/squad-newsqa-train.json \
  --dev_file ~/Data/newsqa/newsqa-squad2-dataset/squad-newsqa-dev.json \
  --test_file ~/Data/newsqa/newsqa-squad2-dataset/squad-newsqa-test.json \
  --train_batch_size 256 \
  --train_batch_size_2 24 \
  --eval_batch_size 32  \
  --learning_rate 2e-5 \
  --num_train_epochs 1 \
  --num_train_epochs_2 3 \
  --max_seq_length 128 \
  --max_seq_length_2 512 \
  --doc_stride 128 \
  --eval_metric best_f1 \
  --output_dir outputs/newsqa/retr \
  --output_dir_2 outputs/newsqa/read \
  --data_binary_dir data_binary/retr \
  --data_binary_dir_2 data_binary/read \
  --version_2_with_negative \
  --do_lower_case \
  --top_k 5 \
  --do_preprocess \
  --do_preprocess_2 \
  --first_stage \

In order to improve efficiency, we store data and model generated during training in a binary format. Specifically, when you switch on do_preprocess, the converted data in the first stage will be stored in the directory data_binary, next time you can switch off this option to directly load data. As well, do_preprocess aims at the data in the second stage, and first_stage is for the retriever model. The model and metrics result can be found in the directory output/newsqa after training.

License

Soochow University © Mengxing Dong

Owner
Walle
Walle
Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.

Summarization, translation, Q&A, text generation and more at blazing speed using a T5 version implemented in ONNX. This package is still in alpha stag

Abel 211 Dec 28, 2022
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 29, 2022
Code for hyperboloid embeddings for knowledge graph entities

Implementation for the papers: Self-Supervised Hyperboloid Representations from Logical Queries over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao,

30 Dec 10, 2022
Machine translation models released by the Gourmet project

Gourmet Models Overview The Gourmet project has released several machine translation models to translate low-resource languages. This repository conta

Edinburgh NLP 5 Dec 08, 2021
GNES enables large-scale index and semantic search for text-to-text, image-to-image, video-to-video and any-to-any content form

GNES is Generic Neural Elastic Search, a cloud-native semantic search system based on deep neural network.

GNES.ai 1.2k Jan 06, 2023
Just Another Telegram Ai Chat Bot Written In Python With Pyrogram.

OkaeriChatBot Just another Telegram AI chat bot written in Python using Pyrogram. Requirements Python 3.7 or higher.

Wahyusaputra 2 Dec 23, 2021
Multispeaker & Emotional TTS based on Tacotron 2 and Waveglow

This Repository contains a sample code for Tacotron 2, WaveGlow with multi-speaker, emotion embeddings together with a script for data preprocessing.

Ivan Didur 106 Jan 01, 2023
Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
Korean Simple Contrastive Learning of Sentence Embeddings using SKT KoBERT and kakaobrain KorNLU dataset

KoSimCSE Korean Simple Contrastive Learning of Sentence Embeddings implementation using pytorch SimCSE Installation git clone https://github.com/BM-K/

34 Nov 24, 2022
Chinese NewsTitle Generation Project by GPT2.带有超级详细注释的中文GPT2新闻标题生成项目。

GPT2-NewsTitle 带有超详细注释的GPT2新闻标题生成项目 UpDate 01.02.2021 从网上收集数据,将清华新闻数据、搜狗新闻数据等新闻数据集,以及开源的一些摘要数据进行整理清洗,构建一个较完善的中文摘要数据集。 数据集清洗时,仅进行了简单地规则清洗。

logCong 785 Dec 29, 2022
Sapiens is a human antibody language model based on BERT.

Sapiens: Human antibody language model ____ _ / ___| __ _ _ __ (_) ___ _ __ ___ \___ \ / _` | '_ \| |/ _ \ '

Merck Sharp & Dohme Corp. a subsidiary of Merck & Co., Inc. 13 Nov 20, 2022
Proquabet - Convert your prose into proquints and then you essentially have Vogon poetry

Proquabet Turn your prose into a constant stream of encrypted and meaningless-so

Milo Fultz 2 Oct 10, 2022
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Dec 26, 2022
Weird Sort-and-Compress Thing

Weird Sort-and-Compress Thing A weird integer sorting + compression algorithm inspired by a conversation with Luthingx (it probably already exists by

Douglas 1 Jan 03, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

Nathan Cooper 2.3k Jan 01, 2023
Nested Named Entity Recognition

Nested Named Entity Recognition Training Dataset: CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark url: https://tianchi.aliyun.

8 Dec 25, 2022
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 Corpora 📃 Corpora Number of documents Size (GB) BNE 201,080,084 570GB Models 🤖 RoBERTa-base BNE: https://huggingface.co

PlanTL-SANIDAD 203 Dec 20, 2022
One Stop Anomaly Shop: Anomaly detection using two-phase approach: (a) pre-labeling using statistics, Natural Language Processing and static rules; (b) anomaly scoring using supervised and unsupervised machine learning.

One Stop Anomaly Shop (OSAS) Quick start guide Step 1: Get/build the docker image Option 1: Use precompiled image (might not reflect latest changes):

Adobe, Inc. 148 Dec 26, 2022
一个基于Nonebot2和go-cqhttp的娱乐性qq机器人

Takker - 一个普通的QQ机器人 此项目为基于 Nonebot2 和 go-cqhttp 开发,以 Sqlite 作为数据库的QQ群娱乐机器人 关于 纯兴趣开发,部分功能借鉴了大佬们的代码,作为Q群的娱乐+功能性Bot 声明 此项目仅用于学习交流,请勿用于非法用途 这是开发者的第一个Pytho

风屿 79 Dec 29, 2022