Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks

Overview

TestRank in Pytorch

Code for the paper TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks by Yu Li, Min Li, Qiuxia Lai, Yannan Liu, and Qiang Xu.

If you find this repository useful for your work, please consider citing it as follows:

@article{yu2021testrank,
  title={TestRank: Bringing Order into Unlabeled Test Instances for Deep Learning Tasks},
  author={Yu Li, Min Li, Qiuxia Lai, Yannan Liu, and Qiang Xu},
  journal={NeurIPS},
  year={2021}
}

1. Setup

Install dependencies

conda env create -f environment.yml

Please run the code on GPU.

2. Runing

There are mainly three steps involved:

  • Prepare the DL models to be tested
  • Prepare the unsupervised BYOL feature extractor
  • Launch a specific test input prioritization technique

We illustrate these steps as the following.

2.1. Download the Pre-trained DL model under test

Please download the classifiers to corresponding folder ./checkpoint/{dataset}/ckpt_bias/

If you want to train your own classifiers, please refer to the Training part.

2.2. Download the Feature extractor

We papare pretrained feature extractor for the each (e.g. CIFAR-10, SVHN, STL10) dataset. Please put the downloaded file in the "./ckpt_byol/" folder.

If you want to train your own classifiers, please refer to the Training part.

2.3. Perform Test Selection

Call the 'run.sh' file with argument 'selection':

  ./run.sh selection

Configure your run.sh follow the discription below

  python selection.py \
              --dataset $DATASET \                   # specify the dataset to use
              --manualSeed ${RANDOM_SEED} \          # random seed
              --model2test_arch $MODEL2TEST \        # architecture of the model under test (e.g. resnet18)
              --model2test_path $MODEL2TESTPATH \    # the path storing the model weights 
              --model_number $MODEL_NO \             # which model to test, model 0, 1, or 2?
              --save_path ${save_path} \             # The result will be stored in here
              --data_path ${DATA_ROOT} \             # Dataset root path
              --graph_nn \                           # use graph neural network in testrank
              --feature_extractor_id ${feature_extractor_id} \ # type of feature extractor, 0: BYOL model, 1: the model under test
              --no_neighbors ${no_neighbors} \       # number of neighbors in to constract graph
              --learn_mixed                          # use mlp to combine intrinsic and contextual attributes; otherwise they are brute force combined (multiplication two scores)
              --baseline_gini                        # Use certain baseline method to perform selection, otherwise leave it blank
  • The result is stored in '{save_path}/{date}/{dataset}_{model}/xxx_result.csv' in where xxx stands for the selection method used (e.g. for testrank, the file would be gnn_result.csv)

  • The TRC value is in the last column, and the forth column shows the corresponding budget in percent.

  • To compare with baselines, please specify the corresponding baseline method (e.g. baseline_gini, baseline_uncertainty, baseline_dsa, baseline_mcp):

  • To evaluate different models, change the MODEL_NO to the corresponding model: [0, 1, 2]

3. Training

3.1. Train classifier

If you want to train your own DL model instead of using the pretrained ones, run this command:

./run.sh trainm
  • The trained model will be stored in path './checkpoint/dataset/ckpt_bias/*'.

  • Each model will be assigned with a unique ID (e.g. 0, 1, 2).

  • The code used to train the model are resides in the train_classifier.py file. If you want to change the dataset or model architecture, please modify 'DATASET=dataset_name' or 'MODEL=name'with the desired ones in the run.sh file.

3.2 Train BYOL Feature Extractor

Please refer to this code.

4. Contact

If there are any questions, feel free to send a message to [email protected]

Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 07, 2023
To create a deep learning model which can explain the content of an image in the form of speech through caption generation with attention mechanism on Flickr8K dataset.

To create a deep learning model which can explain the content of an image in the form of speech through caption generation with attention mechanism on Flickr8K dataset.

Ragesh Hajela 0 Feb 08, 2022
Athena is an open-source implementation of end-to-end speech processing engine.

Athena is an open-source implementation of end-to-end speech processing engine. Our vision is to empower both industrial application and academic research on end-to-end models for speech processing.

Ke Technologies 34 Sep 08, 2022
A Domain Specific Language (DSL) for building language patterns. These can be later compiled into spaCy patterns, pure regex, or any other format

RITA DSL This is a language, loosely based on language Apache UIMA RUTA, focused on writing manual language rules, which compiles into either spaCy co

Šarūnas Navickas 60 Sep 26, 2022
Search-Engine - 📖 AI based search engine

Search Engine AI based search engine that was trained on 25000 samples, feel free to train on up to 1.2M sample from kaggle dataset, link below StackS

Vladislav Kruglikov 2 Nov 29, 2022
Trains an OpenNMT PyTorch model and SentencePiece tokenizer.

Trains an OpenNMT PyTorch model and SentencePiece tokenizer. Designed for use with Argos Translate and LibreTranslate.

Argos Open Tech 61 Dec 13, 2022
Honor's thesis project analyzing whether the GPT-2 model can more effectively generate free-verse or structured poetry.

gpt2-poetry The following code is for my senior honor's thesis project, under the guidance of Dr. Keith Holyoak at the University of California, Los A

Ashley Kim 2 Jan 09, 2022
Quantifiers and Negations in RE Documents

Quantifiers-and-Negations-in-RE-Documents This project was part of my work for a

Nicolas Ruscher 1 Feb 01, 2022
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
Easy to start. Use deep nerual network to predict the sentiment of movie review.

Easy to start. Use deep nerual network to predict the sentiment of movie review. Various methods, word2vec, tf-idf and df to generate text vectors. Various models including lstm and cov1d. Achieve f1

1 Nov 19, 2021
Source code of the "Graph-Bert: Only Attention is Needed for Learning Graph Representations" paper

Graph-Bert Source code of "Graph-Bert: Only Attention is Needed for Learning Graph Representations". Please check the script.py as the entry point. We

14 Mar 25, 2022
Longformer: The Long-Document Transformer

Longformer Longformer and LongformerEncoderDecoder (LED) are pretrained transformer models for long documents. ***** New December 1st, 2020: Longforme

AI2 1.6k Dec 29, 2022
NLP-Project - Used an API to scrape 2000 reddit posts, then used NLP analysis and created a classification model to mixed succcess

Project 3: Web APIs & NLP Problem Statement How do r/Libertarian and r/Neoliberal differ on Biden post-inaguration? The goal of the project is to see

Adam Muhammad Klesc 2 Mar 29, 2022
Google's Meena transformer chatbot implementation

Here's my attempt at recreating Meena, a state of the art chatbot developed by Google Research and described in the paper Towards a Human-like Open-Domain Chatbot.

Francesco Pham 94 Dec 25, 2022
AutoGluon: AutoML for Text, Image, and Tabular Data

AutoML for Text, Image, and Tabular Data AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in yo

Amazon Web Services - Labs 5.2k Dec 29, 2022
This is Assignment1 code for the Web Data Processing System.

This is a Python program to Entity Linking by processing WARC files. We recognize entities from web pages and link them to a Knowledge Base(Wikidata).

3 Dec 04, 2022
A telegram bot to translate 100+ Languages

🔥 GOOGLE TRANSLATER 🔥 The owner would not be responsible for any kind of bans due to the bot. • ⚡ INSTALLING ⚡ • • 🔰 Deploy To Railway 🔰 • • ✅ OFF

Aɴᴋɪᴛ Kᴜᴍᴀʀ 5 Dec 20, 2021
🏖 Easy training and deployment of seq2seq models.

Headliner Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both resear

Axel Springer Ideas Engineering GmbH 231 Nov 18, 2022
KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark.

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022