:id: A python library for accurate and scalable fuzzy matching, record deduplication and entity-resolution.

Overview

Dedupe Python Library

Tests PassingCoverage Status

dedupe is a python library that uses machine learning to perform fuzzy matching, deduplication and entity resolution quickly on structured data.

dedupe will help you:

  • remove duplicate entries from a spreadsheet of names and addresses
  • link a list with customer information to another with order history, even without unique customer IDs
  • take a database of campaign contributions and figure out which ones were made by the same person, even if the names were entered slightly differently for each record

dedupe takes in human training data and comes up with the best rules for your dataset to quickly and automatically find similar records, even with very large databases.

Important links

dedupe library consulting

If you or your organization would like professional assistance in working with the dedupe library, Dedupe.io LLC offers consulting services. Read more about pricing and available services here.

Tools built with dedupe

Dedupe.io

A cloud service powered by the dedupe library for de-duplicating and finding matches in your data. It provides a step-by-step wizard for uploading your data, setting up a model, training, clustering and reviewing the results.

Dedupe.io also supports record linkage across data sources and continuous matching and training through an API.

For more, see the Dedupe.io product site, tutorials on how to use it, and differences between it and the dedupe library.

csvdedupe

Command line tool for de-duplicating and linking CSV files. Read about it on Source Knight-Mozilla OpenNews.

Installation

Using dedupe

If you only want to use dedupe, install it this way:

pip install dedupe

Familiarize yourself with dedupe's API, and get started on your project. Need inspiration? Have a look at some examples.

Developing dedupe

We recommend using virtualenv and virtualenvwrapper for working in a virtualized development environment. Read how to set up virtualenv.

Once you have virtualenvwrapper set up,

mkvirtualenv dedupe
git clone git://github.com/dedupeio/dedupe.git
cd dedupe
pip install "numpy>=1.9"
pip install -r requirements.txt
cython src/*.pyx
pip install -e .

If these tests pass, then everything should have been installed correctly!

pytest

Afterwards, whenever you want to work on dedupe,

workon dedupe

Testing

Unit tests of core dedupe functions

pytest

Test using canonical dataset from Bilenko's research

Using Deduplication

python tests/canonical.py

Using Record Linkage

python tests/canonical_matching.py

Team

  • Forest Gregg, DataMade
  • Derek Eder, DataMade

Credits

Dedupe is based on Mikhail Yuryevich Bilenko's Ph.D. dissertation: Learnable Similarity Functions and their Application to Record Linkage and Clustering.

Errors / Bugs

If something is not behaving intuitively, it is a bug, and should be reported. Report it here

Note on Patches/Pull Requests

  • Fork the project.
  • Make your feature addition or bug fix.
  • Send us a pull request. Bonus points for topic branches.

Copyright

Copyright (c) 2019 Forest Gregg and Derek Eder. Released under the MIT License.

Third-party copyright in this distribution is noted where applicable.

Citing Dedupe

If you use Dedupe in an academic work, please give this citation:

Forest Gregg and Derek Eder. 2019. Dedupe. https://github.com/dedupeio/dedupe.

Owner
Dedupe.io
De-duplicate and find matches in your Excel spreadsheet or database
Dedupe.io
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
Translation for Trilium Notes. Trilium Notes 中文版.

Trilium Translation 中文说明 This repo provides a translation for the awesome Trilium Notes. Currently, I have translated Trilium Notes into Chinese. Test

743 Jan 08, 2023
DVC-NLP-Simple-usecase

dvc-NLP-simple-usecase DVC NLP project Reference repository: official reference repo DVC STUDIO MY View Bag of Words- Krish Naik TF-IDF- Krish Naik ST

SUNNY BHAVEEN CHANDRA 2 Oct 02, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
To classify the News into Real/Fake using Features from the Text Content of the article

Hoax-Detector Authenticity of news has now become a major problem. The Idea is to classify the News into Real/Fake using Features from the Text Conten

Aravindhan 1 Feb 09, 2022
A Facebook Messenger Chatbot using NLP

A Facebook Messenger Chatbot using NLP This project is about creating a messenger chatbot using basic NLP techniques and models like Logistic Regressi

6 Nov 20, 2022
An Analysis Toolkit for Natural Language Generation (Translation, Captioning, Summarization, etc.)

VizSeq is a Python toolkit for visual analysis on text generation tasks like machine translation, summarization, image captioning, speech translation

Facebook Research 409 Oct 28, 2022
無料で使える中品質なテキスト読み上げソフトウェア、VOICEVOXの音声合成エンジン

VOICEVOX ENGINE VOICEVOXの音声合成エンジン。 実態は HTTP サーバーなので、リクエストを送信すればテキスト音声合成できます。 API ドキュメント VOICEVOX ソフトウェアを起動した状態で、ブラウザから

Hiroshiba 3 Jul 05, 2022
PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

YangHeng 567 Jan 07, 2023
BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

303 Dec 17, 2022
Dust model dichotomous performance analysis

Dust-model-dichotomous-performance-analysis Using a collated dataset of 90,000 dust point source observations from 9 drylands studies from around the

1 Dec 17, 2021
Graph Coloring - Weighted Vertex Coloring Problem

Graph Coloring - Weighted Vertex Coloring Problem This project proposes several local searches and an MCTS algorithm for the weighted vertex coloring

Cyril 1 Jul 08, 2022
Correctly generate plurals, ordinals, indefinite articles; convert numbers to words

NAME inflect.py - Correctly generate plurals, singular nouns, ordinals, indefinite articles; convert numbers to words. SYNOPSIS import inflect p = in

Jason R. Coombs 762 Dec 29, 2022
REST API for sentence tokenization and embedding using Multilingual Universal Sentence Encoder.

What is MUSE? MUSE stands for Multilingual Universal Sentence Encoder - multilingual extension (16 languages) of Universal Sentence Encoder (USE). MUS

Dani El-Ayyass 47 Sep 05, 2022
Basic Utilities for PyTorch Natural Language Processing (NLP)

Basic Utilities for PyTorch Natural Language Processing (NLP) PyTorch-NLP, or torchnlp for short, is a library of basic utilities for PyTorch NLP. tor

Michael Petrochuk 2.1k Jan 01, 2023
A collection of GNN-based fake news detection models.

This repo includes the Pytorch-Geometric implementation of a series of Graph Neural Network (GNN) based fake news detection models. All GNN models are implemented and evaluated under the User Prefere

SafeGraph 251 Jan 01, 2023
A fast and easy implementation of Transformer with PyTorch.

FasySeq FasySeq is a shorthand as a Fast and easy sequential modeling toolkit. It aims to provide a seq2seq model to researchers and developers, which

宁羽 7 Jul 18, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker Source code for ACL-IJCNLP 2021 Long paper: Document-le

84 Dec 15, 2022
The aim of this task is to predict someone's English proficiency based on a text input.

English_proficiency_prediction_NLP The aim of this task is to predict someone's English proficiency based on a text input. Using the The NICT JLE Corp

1 Dec 13, 2021
Material for GW4SHM workshop, 16/03/2022.

GW4SHM Workshop Wednesday, 16th March 2022 (13:00 – 15:15 GMT): Presented by: Dr. Rhodri Nelson, Imperial College London Project website: https://www.

Devito Codes 1 Mar 16, 2022