Extract rooms type, door, neibour rooms, rooms corners nad bounding boxes, and generate graph from rplan dataset

Overview

Housegan-data-reader

House-GAN++ (data-reader)

Code and instructions for converting rplan dataset (raster images) to housegan++ data format. House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects, CVPR 2021. Project website.

Input Data

alt text
Data: RPLAN dataset, which offers 60k vector-graphics floorplans designed by professional architects.

How to run

python rasetr_to_json.py --path #rplan_dataset/#image_number.png

Output data format

The data file (e.g., /sample_output/0.json).

ROOM_CLASS = {"living_room": 1, "kitchen": 2, "bedroom": 3, "bathroom": 4, "balcony": 5, "entrance": 6, "dining room": 7, "study room": 8,
              "storage": 10 , "front door": 15, "unknown": 16, "interior_door": 17}
              
              
# having room type in it
"room_type": [3, 4, 1, 3 ]

#bounding boxes per room        
"boxes: [[72.0, 161.0, 124.0, 220.0], [72.0, 130.0, 107.0, 157.0], [111.0, 28.0, 184.0, 203.0], [72.0, 87.0, 124.0, 126.0]] 

#first four entry are per list are rooms edges and 4th and 6th are showing what room type is on each side of edge 
"edges":[72.0, 161.0, 72.0, 220.0, 3, 0], ...,[107.0, 130.0, 72.0, 130.0, 4, 0], [148.0, 28.0, 148.0, 87.0, 1, 2]] 

#room indexes that are on each side of the edges
"ed_rm":[0], [0], [0], [0, 2], ..., [2], [2, 3], [2, 1], [2, 0], [2]] 

Citation

Please consider citing our work.

@inproceedings{nauata2021house,
  title={House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects},
  author={Nauata, Nelson and Hosseini, Sepidehsadat and Chang, Kai-Hung and Chu, Hang and Cheng, Chin-Yi and Furukawa, Yasutaka},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={13632--13641},
  year={2021}
}

Contact

If you have any question, feel free to contact me at [email protected]

Acknowledgement

This research is partially supported by NSERC Discovery Grants, NSERC Discovery Grants Accelerator Supplements, DND/NSERC Discovery Grant Supplement, and Autodesk. We would like to thank architects and students for participating in our user study.

Owner
Sepid Hosseini
Research Assistant in "Gruvi Lab"
Sepid Hosseini
Lyrics generation with GPT2-based Transformer

HuggingArtists - Train a model to generate lyrics Create AI-Artist in just 5 minutes! 🚀 Run the demo notebook to train 🚀 Run the GUI demo to test Di

Aleksey Korshuk 65 Dec 19, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
Winner system (DAMO-NLP) of SemEval 2022 MultiCoNER shared task over 10 out of 13 tracks.

KB-NER: a Knowledge-based System for Multilingual Complex Named Entity Recognition The code is for the winner system (DAMO-NLP) of SemEval 2022 MultiC

116 Dec 27, 2022
The official code for “DocTr: Document Image Transformer for Geometric Unwarping and Illumination Correction”, ACM MM, Oral Paper, 2021.

Good news! Our new work exhibits state-of-the-art performances on DocUNet benchmark dataset: DocScanner: Robust Document Image Rectification with Prog

Hao Feng 231 Dec 26, 2022
A 30000+ Chinese MRC dataset - Delta Reading Comprehension Dataset

Delta Reading Comprehension Dataset 台達閱讀理解資料集 Delta Reading Comprehension Dataset (DRCD) 屬於通用領域繁體中文機器閱讀理解資料集。 本資料集期望成為適用於遷移學習之標準中文閱讀理解資料集。 本資料集從2,108篇

272 Dec 15, 2022
Tool to add main subject to items on Wikidata using a WMFs CirrusSearch for named entity recognition or a manually supplied list of QIDs

ItemSubjector Tool made to add main subject statements to items based on the title using a home-brewed CirrusSearch-based Named Entity Recognition alg

Dennis Priskorn 9 Nov 17, 2022
Coreference resolution for English, French, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, Explosion AI 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 French 1.2.3 German 1.2

Explosion 70 Dec 12, 2022
An implementation of WaveNet with fast generation

pytorch-wavenet This is an implementation of the WaveNet architecture, as described in the original paper. Features Automatic creation of a dataset (t

Vincent Herrmann 858 Dec 27, 2022
An Open-Source Package for Neural Relation Extraction (NRE)

OpenNRE We have a DEMO website (http://opennre.thunlp.ai/). Try it out! OpenNRE is an open-source and extensible toolkit that provides a unified frame

THUNLP 3.9k Jan 03, 2023
MicBot - MicBot uses Google Translate to speak everyone's chat messages

MicBot MicBot uses Google Translate to speak everyone's chat messages. It can al

2 Mar 09, 2022
Fine-tuning scripts for evaluating transformer-based models on KLEJ benchmark.

The KLEJ Benchmark Baselines The KLEJ benchmark (Kompleksowa Lista Ewaluacji Językowych) is a set of nine evaluation tasks for the Polish language und

Allegro Tech 17 Oct 18, 2022
BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

303 Dec 17, 2022
Based on 125GB of data leaked from Twitch, you can see their monthly revenues from 2019-2021

Twitch Revenues Bu script'i kullanarak istediğiniz yayıncıların, Twitch'den sızdırılan 125 GB'lik veriye dayanarak, 2019-2021 arası aylık gelirlerini

4 Nov 11, 2021
Torchrecipes provides a set of reproduci-able, re-usable, ready-to-run RECIPES for training different types of models, across multiple domains, on PyTorch Lightning.

Recipes are a standard, well supported set of blueprints for machine learning engineers to rapidly train models using the latest research techniques without significant engineering overhead.Specifica

Meta Research 193 Dec 28, 2022
Develop open-source Python Arabic NLP libraries that the Arab world will easily use in all Natural Language Processing applications

Develop open-source Python Arabic NLP libraries that the Arab world will easily use in all Natural Language Processing applications

BADER ALABDAN 2 Oct 22, 2022
FactSumm: Factual Consistency Scorer for Abstractive Summarization

FactSumm: Factual Consistency Scorer for Abstractive Summarization FactSumm is a toolkit that scores Factualy Consistency for Abstract Summarization W

devfon 83 Jan 09, 2023
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT.

KR-BERT-SimCSE Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT. Training Unsupervised python train_unsupervised.py --mi

Jeong Ukjae 27 Dec 12, 2022
A text file containing 479k English words for all your dictionary/word-based projects e.g: auto-completion / autosuggestion

List Of English Words A text file containing over 466k English words. While searching for a list of english words (for an auto-complete tutorial) I fo

dwyl 8.5k Jan 03, 2023
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

Tao Lei 14 Dec 12, 2022