Visual Automata is a Python 3 library built as a wrapper for Caleb Evans' Automata library to add more visualization features.

Overview

Latest Version Supported Python versions Downloads

Visual Automata

Copyright 2021 Lewi Lie Uberg
Released under the MIT license

Visual Automata is a Python 3 library built as a wrapper for Caleb Evans' Automata library to add more visualization features.

Contents

Prerequisites

pip install automata-lib
pip install pandas
pip install graphviz
pip install colormath
pip install jupyterlab

Installing

pip install visual-automata

VisualDFA

Importing

Import needed classes.

from automata.fa.dfa import DFA

from visual_automata.fa.dfa import VisualDFA

Instantiating DFAs

Define an automata-lib DFA that can accept any string ending with 00 or 11.

dfa = VisualDFA(
    states={"q0", "q1", "q2", "q3", "q4"},
    input_symbols={"0", "1"},
    transitions={
        "q0": {"0": "q3", "1": "q1"},
        "q1": {"0": "q3", "1": "q2"},
        "q2": {"0": "q3", "1": "q2"},
        "q3": {"0": "q4", "1": "q1"},
        "q4": {"0": "q4", "1": "q1"},
    },
    initial_state="q0",
    final_states={"q2", "q4"},
)

Converting

An automata-lib DFA can be converted to a VisualDFA.

Define an automata-lib DFA that can accept any string ending with 00 or 11.

dfa = DFA(
    states={"q0", "q1", "q2", "q3", "q4"},
    input_symbols={"0", "1"},
    transitions={
        "q0": {"0": "q3", "1": "q1"},
        "q1": {"0": "q3", "1": "q2"},
        "q2": {"0": "q3", "1": "q2"},
        "q3": {"0": "q4", "1": "q1"},
        "q4": {"0": "q4", "1": "q1"},
    },
    initial_state="q0",
    final_states={"q2", "q4"},
)

Convert automata-lib DFA to VisualDFA.

dfa = VisualDFA(dfa)

Minimal-DFA

Creates a minimal DFA which accepts the same inputs as the old one. Unreachable states are removed and equivalent states are merged. States are renamed by default.

new_dfa = VisualDFA(
    states={'q0', 'q1', 'q2'},
    input_symbols={'0', '1'},
    transitions={
        'q0': {'0': 'q0', '1': 'q1'},
        'q1': {'0': 'q0', '1': 'q2'},
        'q2': {'0': 'q2', '1': 'q1'}
    },
    initial_state='q0',
    final_states={'q1'}
)
new_dfa.table
      0    1
→q0  q0  *q1
*q1  q0   q2
q2   q2  *q1
new_dfa.show_diagram()

alt text

minimal_dfa = VisualDFA.minify(new_dfa)
minimal_dfa.show_diagram()

alt text

minimal_dfa.table
                0        1
→{q0,q2}  {q0,q2}      *q1
*q1       {q0,q2}  {q0,q2}

Transition Table

Outputs the transition table for the given DFA.

dfa.table
       0    1
→q0   q3   q1
q1    q3  *q2
*q2   q3  *q2
q3   *q4   q1
*q4  *q4   q1

Check input strings

1001 does not end with 00 or 11, and is therefore Rejected

dfa.input_check("1001")
          [Rejected]                         
Step: Current state: Input symbol: New state:
1                →q0             1         q1
2                 q1             0         q3
3                 q3             0        *q4
4                *q4             1         q1

10011 does end with 11, and is therefore Accepted

dfa.input_check("10011")
          [Accepted]                         
Step: Current state: Input symbol: New state:
1                →q0             1         q1
2                 q1             0         q3
3                 q3             0        *q4
4                *q4             1         q1
5                 q1             1        *q2

Show Diagram

For IPython dfa.show_diagram() may be used.
For a python script dfa.show_diagram(view=True) may be used to automatically view the graph as a PDF file.

dfa.show_diagram()

alt text

The show_diagram method also accepts input strings, and will return a graph with gradient red arrows for Rejected results, and gradient green arrows for Accepted results. It will also display a table with transitions states stepwise. The steps in this table will correspond with the [number] over each traversed arrow.

Please note that for visual purposes additional arrows are added if a transition is traversed more than once.

dfa.show_diagram("1001")
          [Rejected]                         
Step: Current state: Input symbol: New state:
1                →q0             1         q1
2                 q1             0         q3
3                 q3             0        *q4
4                *q4             1         q1

alt text

dfa.show_diagram("10011")
          [Accepted]                         
Step: Current state: Input symbol: New state:
1                →q0             1         q1
2                 q1             0         q3
3                 q3             0        *q4
4                *q4             1         q1
5                 q1             1        *q2

alt text

Authors

License

This project is licensed under the MIT License - see the LICENSE.md file for details

Acknowledgments

You might also like...
An open-source NLP research library, built on PyTorch.
An open-source NLP research library, built on PyTorch.

An Apache 2.0 NLP research library, built on PyTorch, for developing state-of-the-art deep learning models on a wide variety of linguistic tasks. Quic

An open-source NLP research library, built on PyTorch.
An open-source NLP research library, built on PyTorch.

An Apache 2.0 NLP research library, built on PyTorch, for developing state-of-the-art deep learning models on a wide variety of linguistic tasks. Quic

A deep learning-based translation library built on Huggingface transformers

DL Translate A deep learning-based translation library built on Huggingface transformers and Facebook's mBART-Large 💻 GitHub Repository 📚 Documentat

Natural Language Processing library built with AllenNLP 🌲🌱
Natural Language Processing library built with AllenNLP 🌲🌱

Custom Natural Language Processing with big and small models 🌲🌱

A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.

Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It

This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

A pytorch implementation of the ACL2019 paper
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

Code for paper "Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features"

Role-oriented Network Embedding Based on Adversarial Learning between Higher-order and Local Features Train python main.py --dataset brazil-flights C

An easy to use, user-friendly and efficient code for extracting OpenAI CLIP (Global/Grid) features from image and text respectively.

Extracting OpenAI CLIP (Global/Grid) Features from Image and Text This repo aims at providing an easy to use and efficient code for extracting image &

Comments
  • FrozenNFA constructor attempts to call deepcopy on frozendicts

    FrozenNFA constructor attempts to call deepcopy on frozendicts

    The VisualNFA constructor attempts to create a deep copy of the passed nfa, especially the transitions dictionary: https://github.com/lewiuberg/visual-automata/blob/3ea0cdc4de9d3919250919b70fbc036d75120a85/visual_automata/fa/nfa.py#L469

    The deepcopy method is monkeypatched onto dict via curse: https://github.com/lewiuberg/visual-automata/blob/3ea0cdc4de9d3919250919b70fbc036d75120a85/visual_automata/fa/nfa.py#L32

    However, automata-lib 7.0.1 returns a frozendict from the frozendict package instead, so the method call fails. It is not clear if copying the frozendict is at all necessary; deepcopy returns the object as-is.

    MRE

    Using most recent versions:

    • automata-lib 7.0.1
    • visual_automata 1.1.1
    from automata.fa.nfa import NFA
    from visual_automata.fa.nfa import VisualNFA
    
    nfa = NFA(states={"q0"}, input_symbols={"i0"}, transitions={"q0": {"i0": {"q0"}}}, initial_state="q0",
              final_states={"q0"})
    VisualNFA(nfa).show_diagram(view=True)
    

    Expected Behavior

    The automaton is shown.

    Actual Behavior

    Traceback (most recent call last):
      File "/path/to/scratch_1.py", line 6, in <module>
        VisualNFA(nfa).show_diagram(view=True)
      File "/path/to/site-packages/visual_automata/fa/nfa.py", line 619, in show_diagram
        all_transitions_pairs = self._transitions_pairs(self.nfa.transitions)
      File "/path/to/site-packages/visual_automata/fa/nfa.py", line 469, in _transitions_pairs
        all_transitions = all_transitions.deepcopy()
    AttributeError: 'frozendict.frozendict' object has no attribute 'deepcopy'
    
    opened by no-preserve-root 3
  • VisualDFA constructor implicitly checks wrapped automaton cardinality

    VisualDFA constructor implicitly checks wrapped automaton cardinality

    The VisualDFA constructor checks the dfa parameter using https://github.com/lewiuberg/visual-automata/blob/3ea0cdc4de9d3919250919b70fbc036d75120a85/visual_automata/fa/dfa.py#L34

    This checks if dfa is truthy. Since the DFA class defines a __len__ method (and no __bool__), is is truthy iff len(dfa) != 0. Unfortunately, the length checks the dfa's cardinality, i.e., the size if the input language. For infinite-language DFAs, an exception is then raised. As a result, infinite DFAs cannot be visualized.

    This could be fixed by testing if dfa is None. VisualNFA is not affected since NFA does not define a __len__ method at the moment, but would fail if a similar method would be added to NFA.

    MRE

    Using most recent versions:

    • automata-lib 7.0.1
    • visual_automata 1.1.1
    from automata.fa.dfa import DFA
    from visual_automata.fa.dfa import VisualDFA
    
    dfa = DFA(states={"q0"}, input_symbols={"i0"}, transitions={"q0": {"i0": "q0"}}, initial_state="q0",
              final_states={"q0"})
    VisualDFA(dfa).show_diagram(view=True)
    

    Expected Behavior

    The automaton is shown.

    Actual Behavior

    Traceback (most recent call last):
      File "/path/to/scratch_1.py", line 6, in <module>
        VisualDFA(dfa).show_diagram(view=True)
      File "/path/to/site-packages/visual_automata/fa/dfa.py", line 34, in __init__
        if dfa:
      File "/path/to/site-packages/automata/fa/dfa.py", line 160, in __len__
        return self.cardinality()
      File "/path/to/site-packages/automata/fa/dfa.py", line 792, in cardinality
        raise exceptions.InfiniteLanguageException("The language represented by the DFA is infinite.")
    automata.base.exceptions.InfiniteLanguageException: The language represented by the DFA is infinite.
    

    Workaround

    Manually copying the automaton works:

    VisualDFA(states=dfa.states, input_symbols=dfa.input_symbols, transitions=dfa.transitions,
              initial_state=dfa.initial_state, final_states=dfa.final_states).show_diagram(view=True)
    
    opened by no-preserve-root 1
Releases(1093bea)
Owner
Lewi Uberg
Lewi Uberg
A toolkit for document-level event extraction, containing some SOTA model implementations

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker Source code for ACL-IJCNLP 2021 Long paper: Document-le

84 Dec 15, 2022
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
ByT5: Towards a token-free future with pre-trained byte-to-byte models

ByT5: Towards a token-free future with pre-trained byte-to-byte models ByT5 is a tokenizer-free extension of the mT5 model. Instead of using a subword

Google Research 409 Jan 06, 2023
An open source framework for seq2seq models in PyTorch.

pytorch-seq2seq Documentation This is a framework for sequence-to-sequence (seq2seq) models implemented in PyTorch. The framework has modularized and

International Business Machines 1.4k Jan 02, 2023
My implementation of Safaricom Machine Learning Codility test. The code has bugs, logical I guess I made errors and any correction will be appreciated.

Safaricom_Codility Machine Learning 2022 The test entails two questions. Question 1 was on Machine Learning. Question 2 was on SQL I ran out of time.

Lawrence M. 1 Mar 03, 2022
This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe

Advent-of-cyber-2019-writeup This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe https://tryhackme.com/shivam007/badges/c

shivam danawale 5 Jul 17, 2022
Official code repository of the paper Linear Transformers Are Secretly Fast Weight Programmers.

Linear Transformers Are Secretly Fast Weight Programmers This repository contains the code accompanying the paper Linear Transformers Are Secretly Fas

Imanol Schlag 77 Dec 19, 2022
Sentence boundary disambiguation tool for Japanese texts (日本語文境界判定器)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e '宿を予約しました♪!まだ2ヶ月も先だけど。早すぎ

Megagon Labs 160 Dec 23, 2022
Python code for ICLR 2022 spotlight paper EViT: Expediting Vision Transformers via Token Reorganizations

Expediting Vision Transformers via Token Reorganizations This repository contain

Youwei Liang 101 Dec 26, 2022
Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization 📥 Download Datasets 📥 Download Trained Models INTRODUCTION TH2ZH (

Nakhun Chumpolsathien 5 Jan 03, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Jungil Kong 1.1k Jan 02, 2023
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
Binary LSTM model for text classification

Text Classification The purpose of this repository is to create a neural network model of NLP with deep learning for binary classification of texts re

Nikita Elenberger 1 Mar 11, 2022
AMUSE - financial summarization

AMUSE AMUSE - financial summarization Unzip data.zip Train new model: python FinAnalyze.py --task train --start 0 --count how many files,-1 for all

1 Jan 11, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular intervals.It sends out the most recent news at random!

Nepali-news-notifier This script just scrapes the most recent Nepali news from Kathmandu Post and notifies the user about current events at regular in

Sachit Yadav 1 Feb 11, 2022
Code for paper: An Effective, Robust and Fairness-awareHate Speech Detection Framework

BiQQLSTM_HS Code and data for paper: Title: An Effective, Robust and Fairness-awareHate Speech Detection Framework. Authors: Guanyi Mou and Kyumin Lee

Guanyi Mou 2 Dec 27, 2022
Materials (slides, code, assignments) for the NYU class I teach on NLP and ML Systems (Master of Engineering).

FREE_7773 Repo containing material for the NYU class (Master of Engineering) I teach on NLP, ML Sys etc. For context on what the class is trying to ac

Jacopo Tagliabue 90 Dec 19, 2022
Full Spectrum Bioinformatics - a free online text designed to introduce key topics in Bioinformatics using the Python

Full Spectrum Bioinformatics is a free online text designed to introduce key topics in Bioinformatics using the Python programming language. The text is written in interactive Jupyter Notebooks, whic

Jesse Zaneveld 33 Dec 28, 2022