profile tools for pytorch nn models

Related tags

Text Data & NLPnnprof
Overview

nnprof

Introduction

nnprof is a profile tool for pytorch neural networks.

Features

  • multi profile mode: nnprof support 4 profile mode: Layer level, Operation level, Mixed level, Layer Tree level. Please check below for detail usage.
  • time and memory profile: nnprof support both time and memory profile now. But since memory profile is first supported in pytorch 1.6, please use torch version >= 1.6 for memory profile.
  • support sorted by given key and show profile percent: user could print table with percentage and sorted profile info using a given key, which is really helpful for optimiziing neural network.

Requirements

  • Python >= 3.6
  • PyTorch
  • Numpy

Get Started

install nnprof

  • pip install:
pip install nnprof
  • from source:
python -m pip install 'git+https://github.com/FateScript/nnprof.git'

# or install after clone this repo
git clone https://github.com/FateScript/nnprof.git
pip install -e nnprof

use nnprf

from nnprof import profile, ProfileMode
import torch
import torchvision

model = torchvision.models.alexnet(pretrained=False)
x = torch.rand([1, 3, 224, 224])

# mode could be anyone in LAYER, OP, MIXED, LAYER_TREE
mode = ProfileMode.LAYER

with profile(model, mode=mode) as prof:
    y = model(x)

print(prof.table(average=False, sorted_by="cpu_time"))
# table could be sorted by presented header.

Part of presented table looks like table below, Note that they are sorted by cpu_time.

╒══════════════════════╤═══════════════════╤═══════════════════╤════════╕
│ name                 │ self_cpu_time     │ cpu_time          │   hits │
╞══════════════════════╪═══════════════════╪═══════════════════╪════════╡
│ AlexNet.features.0   │ 19.114ms (34.77%) │ 76.383ms (45.65%) │      1 │
├──────────────────────┼───────────────────┼───────────────────┼────────┤
│ AlexNet.features.3   │ 5.148ms (9.37%)   │ 20.576ms (12.30%) │      1 │
├──────────────────────┼───────────────────┼───────────────────┼────────┤
│ AlexNet.features.8   │ 4.839ms (8.80%)   │ 19.336ms (11.56%) │      1 │
├──────────────────────┼───────────────────┼───────────────────┼────────┤
│ AlexNet.features.6   │ 4.162ms (7.57%)   │ 16.632ms (9.94%)  │      1 │
├──────────────────────┼───────────────────┼───────────────────┼────────┤
│ AlexNet.features.10  │ 2.705ms (4.92%)   │ 10.713ms (6.40%)  │      1 │
├──────────────────────┼───────────────────┼───────────────────┼────────┤

You are welcomed to try diffierent profile mode and more table format.

Contribution

Any issues and pull requests are welcomed.

Acknowledgement

Some thoughts of nnprof are inspired by torchprof and torch.autograd.profile . Many thanks to the authors.

Owner
Feng Wang
Cleaner @ Megvii
Feng Wang
Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS)

Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS) Yoonhyung Lee, Joongbo Shin, Kyomin Jung Abstract: Although early

LEE YOON HYUNG 147 Dec 05, 2022
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Approximately Correct Machine Intelligence (ACMI) Lab 21 Nov 24, 2022
This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest

Rachford-Rice Contest This is the 25 + 1 year anniversary version of the 1995 Rachford-Rice contest. Can you solve the Rachford-Rice problem for all t

13 Sep 20, 2022
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
Convolutional Neural Networks for Sentence Classification

Convolutional Neural Networks for Sentence Classification Code for the paper Convolutional Neural Networks for Sentence Classification (EMNLP 2014). R

Yoon Kim 2k Jan 02, 2023
This is a NLP based project to extract effective date of the contract from their text files.

Date-Extraction-from-Contracts This is a NLP based project to extract effective date of the contract from their text files. Problem statement This is

Sambhav Garg 1 Jan 26, 2022
Interpretable Models for NLP using PyTorch

This repo is deprecated. Please find the updated package here. https://github.com/EdGENetworks/anuvada Anuvada: Interpretable Models for NLP using PyT

Sandeep Tammu 19 Dec 17, 2022
Leon is an open-source personal assistant who can live on your server.

Leon Your open-source personal assistant. Website :: Documentation :: Roadmap :: Contributing :: Story 👋 Introduction Leon is an open-source personal

Leon AI 11.7k Dec 30, 2022
Reading Wikipedia to Answer Open-Domain Questions

DrQA This is a PyTorch implementation of the DrQA system described in the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions. Quick Link

Facebook Research 4.3k Jan 01, 2023
A collection of GNN-based fake news detection models.

This repo includes the Pytorch-Geometric implementation of a series of Graph Neural Network (GNN) based fake news detection models. All GNN models are implemented and evaluated under the User Prefere

SafeGraph 251 Jan 01, 2023
Code for lyric-section-to-comment generation based on huggingface transformers.

CommentGeneration Code for lyric-section-to-comment generation based on huggingface transformers. Migrate Guyu model and code (both 12-layers and 24-l

Yawei Sun 8 Sep 04, 2021
CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT This repo provides the code for reproducing the experiments in CodeBERT: A Pre-Trained Model for Programming and Natural Languages. CodeBERT

Microsoft 1k Jan 03, 2023
This repository contains helper functions which can help you generate additional data points depending on your NLP task.

NLP Albumentations For Data Augmentation This repository contains helper functions which can help you generate additional data points depending on you

Aflah 6 May 22, 2022
Using Bert as the backbone model for lime, designed for NLP task explanation (sentence pair text classification task)

Lime Comparing deep contextualized model for sentences highlighting task. In addition, take the classic explanation model "LIME" with bert-base model

JHJu 2 Jan 18, 2022
This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.

This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.

EleutherAI 42 Dec 13, 2022
Generate custom detailed survey paper with topic clustered sections and proper citations, from just a single query in just under 30 mins !!

Auto-Research A no-code utility to generate a detailed well-cited survey with topic clustered sections (draft paper format) and other interesting arti

Sidharth Pal 20 Dec 14, 2022
ADCS - Automatic Defect Classification System (ADCS) for SSMC

Table of Contents Table of Contents ADCS Overview Summary Operator's Guide Demo System Design System Logic Training Mode Production System Flow Folder

Tam Zher Min 2 Jun 24, 2022
A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

Alexa 62 Dec 20, 2022
HuggingTweets - Train a model to generate tweets

HuggingTweets - Train a model to generate tweets Create in 5 minutes a tweet generator based on your favorite Tweeter Make my own model with the demo

Boris Dayma 318 Jan 04, 2023
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 881 Jan 03, 2023