A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

Related tags

Text Data & NLPKGEval
Overview

KGEval

A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

The framework and experimental results are described in Ben Rim et al. 2021 (Outstanding Paper Award, AKBC 2021).

Instructions

Create a virtual environment

virtualenv -p python3.6 eval_env
source eval_env/bin/activate
pip install -r requirements.txt

Download data

In the main folder, run:

source data/download.sh

Download model

If you want to test the framework immediately, you can download pre-trained Pykeen models by running:

source download_models.sh

Generate behavioral tests

Symmetry Tests

Can choose --dataset FB15K237, WN18RR, YAGO310

python tests/run.py --dataset FB15K237 --mode generate --capability symmetry

This should result into the following output, and the files for each test set will be added under behavioral_tests\dataset\symmetry:

2021-10-03 23:37:35,060 - [INFO] - Preparing test sets for the dataset FB15K237
2021-10-03 23:37:37,621 - [INFO] - ########################## <----TRAIN---> ############################
2021-10-03 23:37:37,621 - [INFO] - 0 repetitions removed
2021-10-03 23:37:37,621 - [INFO] - 272115 triples remaining in train set
2021-10-03 23:37:37,621 - [INFO] - 6778 symmetric triples found in train set
2021-10-03 23:37:37,786 - [INFO] - ########################## <----TEST---> ############################
2021-10-03 23:37:37,786 - [INFO] - 0 repetitions removed
2021-10-03 23:37:37,786 - [INFO] - 20466 triples remaining in test set
2021-10-03 23:37:37,786 - [INFO] - 113 symmetric triples found in test set
2021-10-03 23:37:37,806 - [INFO] - ########################## <----VALID---> ############################
2021-10-03 23:37:37,806 - [INFO] - 0 repetitions removed
2021-10-03 23:37:37,806 - [INFO] - 17535 triples remaining in valid set
2021-10-03 23:37:37,806 - [INFO] - 113 symmetric triples found in valid set
2021-10-03 23:37:39,106 - [INFO] - #################### <---TEST SET 1: MEMORIZATION ---> ##########################
2021-10-03 23:37:39,106 - [INFO] - There are 5470 entries in the memorization set (occur in both directions)
2021-10-03 23:37:39,106 - [INFO] - #################### <---TEST SET 2: ONE DIRECTION SEEN ---> ##########################
2021-10-03 23:37:39,106 - [INFO] - There are 1308 entries not shown in both directions (to be reversed for testing)
2021-10-03 23:37:39,836 - [INFO] - #################### <--- SYMMETRIC RELATIONS ---> ##########################
2021-10-03 23:37:39,836 - [INFO] - TRAIN SET contains 6778 symmetric entries
2021-10-03 23:37:39,836 - [INFO] - TEST SET contains  113 symmetric entries with 113 not in training
2021-10-03 23:37:39,836 - [INFO] - VALID SET contains 113 symmetric entries with 113 not in training
2021-10-03 23:37:39,839 - [INFO] - #################### <---TEST SET 3: UNSEEN INSTANCES ---> ##########################
2021-10-03 23:37:39,840 - [INFO] - There are 226 entries that are not seen in any direction in training
2021-10-03 23:37:40,267 - [INFO] - #################### <---TEST SET 4: ASYMMETRY ---> ##########################
2021-10-03 23:37:40,267 - [INFO] - There are 3000 asymmetric entries in test set added to test 4

Hierarchy Tests

Only available for FB15K237 dataset

python tests/run.py --dataset FB15K237 --mode generate --capability hierarchy

The output should be and will be available under behavioral_tests/dataset/hierarchy/, the naming of the files corresponds to triples where the tail belongs to a specified level. For example, 1.txt contains triples where the tail has a type of level 1 in the entity type hierarchy :

2021-10-04 01:38:13,517 - [INFO] - Results of Hierarchy Behavioral Tests for FB15K237
2021-10-04 01:38:20,367 - [INFO] - <--------------- Entity Hiararchy statistics ----------------->
2021-10-04 01:38:20,568 - [INFO] - Level 0 contains 1 types and 3415 triples
2021-10-04 01:38:20,887 - [INFO] - Level 1 contains 66 types and 2006 triples
2021-10-04 01:38:20,900 - [INFO] - Level 2 contains 136 types and 4273 triples
2021-10-04 01:38:20,913 - [INFO] - Level 3 contains 213 types and 3560 triples
2021-10-04 01:38:20,923 - [INFO] - Level 4 contains 262 types and 3369 triples

Run Tests (pykeen models)

Symmetry behavioral tests on distmult or rotate:

python tests/run.py --dataset FB15K237 --mode test --model_name rotate

The output will be printed as shown below, and will also be available in the results folder under dataset/symmetry:

2021-10-04 14:00:57,100 - [INFO] - Starting test1 with rotate model
2021-10-04 14:03:23,249 - [INFO] - On test1, MR: 1.2407678244972578, MRR: 0.9400152688974949, [email protected]: 0.9014624953269958, [email protected]: 0.988482654094696, [email protected]: 0.9965264797210693
2021-10-04 14:03:23,249 - [INFO] - Starting test2 with rotate model
2021-10-04 14:04:15,614 - [INFO] - On test2, MR: 23.446483180428135, MRR: 0.4409348919640765, [email protected]: 0.30351680517196655, [email protected]: 0.5894495248794556, [email protected]: 0.7025994062423706
2021-10-04 14:04:15,614 - [INFO] - Starting test3 with rotate model
2021-10-04 14:04:25,364 - [INFO] - On test3, MR: 1018.9469026548672, MRR: 0.04786047740344238, [email protected]: 0.008849557489156723, [email protected]: 0.06194690242409706, [email protected]: 0.12389380484819412
2021-10-04 14:04:25,365 - [INFO] - Starting test4 with rotate model
2021-10-04 14:05:38,900 - [INFO] - On test4, MR: 4901.459, MRR: 0.07606098649786266, [email protected]: 0.9496666789054871, [email protected]: 0.893666684627533, [email protected]: 0.8823333382606506

Hierarchy behavioral tests on distmult or rotate:

   python tests/run.py --dataset FB15K237 --mode test --capability hierarchy --model_name rotate

Run Tests on other models and other frameworks

(To be added)

Owner
NEC Laboratories Europe
Research software developed at NEC Laboratories Europe
NEC Laboratories Europe
Large-scale Knowledge Graph Construction with Prompting

Large-scale Knowledge Graph Construction with Prompting across tasks (predictive and generative), and modalities (language, image, vision + language, etc.)

ZJUNLP 161 Dec 28, 2022
🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

Hugging Face 15k Jan 02, 2023
Text to speech converter with GUI made in Python.

Text-to-speech-with-GUI Text to speech converter with GUI made in Python. To run this download the zip file and run the main file or clone this repo.

SidTheMiner 1 Nov 15, 2021
This repository is home to the Optimus data transformation plugins for various data processing needs.

Transformers Optimus's transformation plugins are implementations of Task and Hook interfaces that allows execution of arbitrary jobs in optimus. To i

Open Data Platform 37 Dec 14, 2022
Nested Named Entity Recognition

Nested Named Entity Recognition Training Dataset: CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark url: https://tianchi.aliyun.

8 Dec 25, 2022
Graphical user interface for Argos Translate

Argos Translate GUI Website | GitHub | PyPI Graphical user interface for Argos Translate. Install pip3 install argostranslategui

Argos Open Tech 16 Dec 07, 2022
基于GRU网络的句子判断程序/A program based on GRU network for judging sentences

SentencesJudger SentencesJudger 是一个基于GRU神经网络的句子判断程序,基本的功能是判断文章中的某一句话是否为一个优美的句子。 English 如何使用SentencesJudger 确认Python运行环境 安装pyTorch与LTP python3 -m pip

8 Mar 24, 2022
NLTK Source

Natural Language Toolkit (NLTK) NLTK -- the Natural Language Toolkit -- is a suite of open source Python modules, data sets, and tutorials supporting

Natural Language Toolkit 11.4k Jan 04, 2023
ETM - R package for Topic Modelling in Embedding Spaces

ETM - R package for Topic Modelling in Embedding Spaces This repository contains an R package called topicmodels.etm which is an implementation of ETM

bnosac 37 Nov 06, 2022
A framework for implementing federated learning

This is partly the reproduction of the paper of [Privacy-Preserving Federated Learning in Fog Computing](DOI: 10.1109/JIOT.2020.2987958. 2020)

DavidChen 46 Sep 23, 2022
Türkçe küfürlü içerikleri bulan bir yapay zeka kütüphanesi / An ML library for profanity detection in Turkish sentences

"Kötü söz sahibine aittir." -Anonim Nedir? sinkaf uygunsuz yorumların bulunmasını sağlayan bir python kütüphanesidir. Farkı nedir? Diğer algoritmalard

KaraGoz 4 Feb 18, 2022
A collection of Korean Text Datasets ready to use using Tensorflow-Datasets.

tfds-korean A collection of Korean Text Datasets ready to use using Tensorflow-Datasets. TensorFlow-Datasets를 이용한 한국어/한글 데이터셋 모음입니다. Dataset Catalog |

Jeong Ukjae 20 Jul 11, 2022
The entmax mapping and its loss, a family of sparse softmax alternatives.

entmax This package provides a pytorch implementation of entmax and entmax losses: a sparse family of probability mappings and corresponding loss func

DeepSPIN 330 Dec 22, 2022
Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

18 Nov 28, 2022
Persian Bert For Long-Range Sequences

ParsBigBird: Persian Bert For Long-Range Sequences The Bert and ParsBert algorithms can handle texts with token lengths of up to 512, however, many ta

Sajjad Ayoubi 63 Dec 14, 2022
Twitter-Sentiment-Analysis - Twitter sentiment analysis for india's top online retailers(2019 to 2022)

Twitter-Sentiment-Analysis Twitter sentiment analysis for india's top online retailers(2019 to 2022) Project Overview : Sentiment Analysis helps us to

Balaji R 1 Jan 01, 2022
Natural Language Processing library built with AllenNLP 🌲🌱

Custom Natural Language Processing with big and small models 🌲🌱

Recognai 65 Sep 13, 2022
CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation

CPT This repository contains code and checkpoints for CPT. CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Gener

fastNLP 342 Jan 05, 2023
Community and sentiment analysis based on tweets

The project has set itself the goal of analyzing the thoughts and interaction of Italian users through the social posts expressed through the Twitter platform on the day of the entry into force of th

3 Nov 17, 2022