Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)

Related tags

Text Data & NLPTOPSIS
Overview

TOPSIS implementation in Python

Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) CHING-LAI Hwang and Yoon introduced TOPSIS in 1981 in their Multiple Criteria Decision Making (MCDM) and Multiple Criteria Decision Analysis (MCDA) methods [1]. TOPSIS strives to minimize the distance between the positive ideal solution and the chosen alternative, as well as to maximize the distance between the negative ideal solution and the chosen alternative. [2]. TOPSIS, in a nutshell, aids researchers to rank alternative items by identifying some criteria. We present alternative information and the criteria for each in the following decision matrix: image It is possible that some criteria are more effective than others. Therefore, some weights are given to their importance. It is required that the summation of n weights equals one.

image

Jahanshahloo et al, (2006), explained the TOPSIS in six main phases as follows:

1) Normalized Decision Matrix

It is the first phase of TOPSIS to normalize the process. Researchers have proposed different types of normalization. In this section, we identify the most commonly used normalization methods. The criterion or attribute is divided into two categories, cost and benefit. There are two formulas for normalizing the decision matrix for each normalization method: one for benefit criteria and one for cost criteria. According to Vafaei et al (2018), some of these normalization methods include:

image

All of the above normalization methods were coded in Normalization.py. Also, there is another related file called Normalized_Decision_Matrix.py, implementing the normalization method on the decision matrix. Now we have anormalized decision matrix as follows:

image

2) Weighted Normalized Decision Matrix

The Weighted Normalized Decision Matrix is calculated by multiplying the normalized decision matrix by the weights.

image

This multiplication is performed in the Weighted_Normalized_Decision_Matrix.py file. Now, we have a weighted normalized decision matrix as follows:

image

3) Ideal Solutions

As was mentioned, TOPSIS strives to minimize the distance between the positive ideal solution and the chosen alternative, as well as to maximize the distance between the negative ideal solution and the chosen alternative. But what are the positive and negative ideal solutions?

If our attribute or criterion is profit-based, positive ideal solution (PIS) and negative ideal solution (NIS) are:

image

If our attribute or criterion is cost-based, positive ideal solution (PIS) and negative ideal solution (NIS) are:

image

In our code, ideal solutions are calculated in Ideal_Solution.py.

  1. Separation measures It is necessary to introduce a measure that can measure how far alternatives are from the ideal solutions. Our measure comprise two main sections: The separation of each alternative from the PIS is calculated as follows:

image

Also, the separation of each alternative from the NIS is calculated as follows:

image

  1. Closeness to the Ideal Solution Now that the distance between ideal solutions and alternatives has been calculated, we rank our alternatives according to how close they are to ideal solutions. The distance measure is calculated by the following formula:

image

It is clear that :

image

6) Ranking

Now, alternatives are ranked in decreasing order based on closeness to the ideal solution. Both of (5) and (6) are calculated in Distance_Between_Ideal_and_Alternatives.py.

7) TOPSIS

In this section, all of the previous .py files are employed and utilized in an integrated way.

References

  1. Hwang, C.L.; Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications. New York: Springer-Verlag.: https://www.springer.com/gp/book/9783540105589
  2. Assari, A., Mahesh, T., & Assari, E. (2012b). Role of public participation in sustainability of historical city: usage of TOPSIS method. Indian Journal of Science and Technology, 5(3), 2289-2294.
  3. Jahanshahloo, G.R., Lotfi, F.H. and Izadikhah, M., 2006. An algorithmic method to extend TOPSIS for decision-making problems with interval data. Applied mathematics and computation, 175(2), pp.1375-1384.
  4. Vafaei, N., Ribeiro, R.A. and Camarinha-Matos, L.M., 2018. Data normalization techniques in decision making: case study with TOPSIS method. International journal of information and decision sciences, 10(1), pp.19-38.
Owner
Hamed Baziyad
Hamed Baziyad
NLP tool to extract emotional phrase from tweets 🤩

Emotional phrase extractor Extract phrase in the given text that is used to express the sentiment. Capturing sentiment in language is important in the

Shahul ES 38 Oct 17, 2022
KoBART model on huggingface transformers

KoBART-Transformers SKT에서 공개한 KoBART를 편리하게 사용할 수 있게 transformers로 포팅하였습니다. Install (Optional) BartModel과 PreTrainedTokenizerFast를 이용하면 설치하실 필요 없습니다. p

Hyunwoong Ko 58 Dec 07, 2022
Precision Medicine Knowledge Graph (PrimeKG)

PrimeKG Website | bioRxiv Paper | Harvard Dataverse Precision Medicine Knowledge Graph (PrimeKG) presents a holistic view of diseases. PrimeKG integra

Machine Learning for Medicine and Science @ Harvard 103 Dec 10, 2022
[Preprint] Escaping the Big Data Paradigm with Compact Transformers, 2021

Compact Transformers Preprint Link: Escaping the Big Data Paradigm with Compact Transformers By Ali Hassani[1]*, Steven Walton[1]*, Nikhil Shah[1], Ab

SHI Lab 367 Dec 31, 2022
Indonesia spellchecker with python

indonesia-spellchecker Ganti kata yang terdapat pada file teks.txt untuk diperiksa kebenaran kata. Run on local machine python3 main.py

Rahmat Agung Julians 1 Sep 14, 2022
fastai ulmfit - Pretraining the Language Model, Fine-Tuning and training a Classifier

fast.ai ULMFiT with SentencePiece from pretraining to deployment Motivation: Why even bother with a non-BERT / Transformer language model? Short answe

Florian Leuerer 26 May 27, 2022
Material for GW4SHM workshop, 16/03/2022.

GW4SHM Workshop Wednesday, 16th March 2022 (13:00 – 15:15 GMT): Presented by: Dr. Rhodri Nelson, Imperial College London Project website: https://www.

Devito Codes 1 Mar 16, 2022
Transformer training code for sequential tasks

Sequential Transformer This is a code for training Transformers on sequential tasks such as language modeling. Unlike the original Transformer archite

Meta Research 578 Dec 13, 2022
Rhyme with AI

Local development Create a conda virtual environment and activate it: conda env create --file environment.yml conda activate rhyme-with-ai Install the

GoDataDriven 28 Nov 21, 2022
DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time

DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches the answers out of 60 billion phrases in Wikipedia, it is also v

Jinhyuk Lee 543 Jan 08, 2023
A script that automatically creates a branch name using google translation api and jira api

About google translation api와 jira api을 사용하여 자동으로 브랜치 이름을 만들어주는 스크립트 Setup 환경변수에 다음 3가지를 등록해야 한다. JIRA_USER : JIRA email (ex: hyunwook.kim 2 Dec 20, 2021

Large-scale Knowledge Graph Construction with Prompting

Large-scale Knowledge Graph Construction with Prompting across tasks (predictive and generative), and modalities (language, image, vision + language, etc.)

ZJUNLP 161 Dec 28, 2022
Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
Task-based datasets, preprocessing, and evaluation for sequence models.

SeqIO: Task-based datasets, preprocessing, and evaluation for sequence models. SeqIO is a library for processing sequential data to be fed into downst

Google 290 Dec 26, 2022
Code for ACL 2021 main conference paper "Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances".

Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances This repository contains the code and pre-trained mode

ICTNLP 90 Dec 27, 2022
Tools, wrappers, etc... for data science with a concentration on text processing

Rosetta Tools for data science with a focus on text processing. Focuses on "medium data", i.e. data too big to fit into memory but too small to necess

207 Nov 22, 2022
IEEEXtreme15.0 Questions And Answers

IEEEXtreme15.0 Questions And Answers IEEEXtreme is a global challenge in which teams of IEEE Student members – advised and proctored by an IEEE member

Dilan Perera 15 Oct 24, 2022
Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger

Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger In this project, our aim is to tune, compare, and contrast the perf

Chirag Daryani 0 Dec 25, 2021
Long text token classification using LongFormer

Long text token classification using LongFormer

abhishek thakur 161 Aug 07, 2022
Neural network models for joint POS tagging and dependency parsing (CoNLL 2017-2018)

Neural Network Models for Joint POS Tagging and Dependency Parsing Implementations of joint models for POS tagging and dependency parsing, as describe

Dat Quoc Nguyen 152 Sep 02, 2022