(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.

Overview

BERT Convolutions

Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains experiments for integrating convolutions and self-attention in BERT models. Code is adapted from Huggingface Transformers. Model code is in src/transformers/modeling_bert.py. Run on Python 3.6.9 and Pytorch 1.7.1 (see requirements.txt).

Training

To train tokenizer, use custom_scripts/train_spm_tokenizer.py. To pre-train BERT with a plain text dataset:

python3 run_language_modeling.py \
--model_type=bert \
--tokenizer_name="./data/sentencepiece/spm.model" \
--config_name="./data/bert_base_config.json" \
--do_train --mlm --line_by_line \
--train_data_file="./data/training_text.txt" \
--per_device_train_batch_size=32 \
--save_steps=25000 \
--block_size=128 \
--max_steps=1000000 \
--warmup_steps=10000 \
--learning_rate=0.0001 --adam_epsilon=1e-6 --weight_decay=0.01 \
--output_dir="./bert-experiments/bert"

The code above produces a cached file of examples (a list of lists of token indices). Each example is an un-truncated and un-padded sentence pair (but includes [CLS] and [SEP] tokens). Convert these lists to an iterable text file using custom_scripts/shuffle_cached_dataset.py. Then, you can pre-train BERT using an iterable dataset (saving memory):

python3 run_language_modeling.py \
--model_type=bert \
--tokenizer_name="./data/sentencepiece/spm.model" \
--config_name="./data/bert_base_config.json" \
--do_train --mlm --train_iterable --line_by_line \
--train_data_file="./data/iterable_pairs_train.txt" \
--per_device_train_batch_size=32 \
--save_steps=25000 \
--block_size=128 \
--max_steps=1000000 \
--warmup_steps=10000 \
--learning_rate=0.0001 --adam_epsilon=1e-6 --weight_decay=0.01 \
--output_dir="./bert-experiments/bert"

Optional flags to change BERT architecture when pre-training from scratch:
In the following, qk uses query/key self-attention, convfixed is a fixed lightweight convolution, convq is query-based dynamic lightweight convolution (relative embeddings), convk is a key-based dynamic lightweight convolution, and convolution is a fixed depthwise convolution.

--attention_kernel="qk_convfixed_convq_convk [num_positions_each_dir]"

Remove absolute position embeddings:

--remove_position_embeddings

Convolutional values, using depthwise-separable (depth) convolutions for half of heads (mixed), and using no activation function (no_act) between the depthwise and pointwise convolutions:

--value_forward="convolution_depth_mixed_no_act [num_positions_each_dir] [num_convolution_groups]"

Convolutional queries/keys for half of heads:

--qk="convolution_depth_mixed_no_act [num_positions_each_dir] [num_convolution_groups]"

Fine-tuning

Training and evaluation for downstream GLUE tasks (note: batch size represents max batch size, because batch size is adjusted for each task):

python3 run_glue.py \
--data_dir="./glue-data/data-tsv" \
--task_name=ALL \
--save_steps=9999999 \
--max_seq_length 128 \
--per_device_train_batch_size 99999 \
--tokenizer_name="./data/sentencepiece/spm.model" \
--model_name_or_path="./bert-experiments/bert" \
--output_dir="./bert-experiments/bert-glue" \
--hyperparams="electra_base" \
--do_eval \
--do_train

Prediction

Run the fine-tuned models on the GLUE test set:
This adds a file with test set predictions to each GLUE task directory.

python3 run_glue.py \
--data_dir="./glue-data/data-tsv" \
--task_name=ALL \
--save_steps=9999999 \
--max_seq_length 128 \
--per_device_train_batch_size 99999 \
--tokenizer_name="./data/sentencepiece/spm.model" \
--model_name_or_path="./bert-experiments/placeholder" \
--output_dir="./bert-experiments/bert-glue" \
--hyperparams="electra_base" \
--do_predict

Then, test results can be compiled into one directory. The test_results directory will contain test predictions, using the fine-tuned model with the highest dev set score for each task. The files in test_results can be zipped and submitted to the GLUE benchmark site for evaluation.

python3 custom_scripts/parse_glue.py \
--input="./bert-experiments/bert-glue" \
--test_dir="./bert-experiments/bert-glue/test_results"

Citation

@inproceedings{chang-etal-2021-convolutions,
  title={Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models},
  author={Tyler Chang and Yifan Xu and Weijian Xu and Zhuowen Tu},
  booktitle={ACL-IJCNLP 2021},
  year={2021},
}
Owner
mlpc-ucsd
mlpc-ucsd
OceanScript is an Esoteric language used to encode and decode text into a formulation of characters

OceanScript is an Esoteric language used to encode and decode text into a formulation of characters - where the final result looks like waves in the ocean.

This repository structures data in title, summary, tags, sentiment given a fragment of a conversation

Understand-conversation-AI This repository structures data in title, summary, tags, sentiment given a fragment of a conversation How to install: pip i

Juan Camilo López Montes 1 Jan 11, 2022
A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode

Bloxflip Smart Bet A program that uses real statistics to choose the best times to bet on BloxFlip's crash gamemode. https://bloxflip.com/crash. THIS

43 Jan 05, 2023
Turn clang-tidy warnings and fixes to comments in your pull request

clang-tidy pull request comments A GitHub Action to post clang-tidy warnings and suggestions as review comments on your pull request. What platisd/cla

Dimitris Platis 30 Dec 13, 2022
Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

Knowledge Graph,Question Answering System,基于知识图谱和向量检索的医疗诊断问答系统

wangle 823 Dec 28, 2022
chaii - hindi & tamil question answering

chaii - hindi & tamil question answering This is the solution for rank 5th in Kaggle competition: chaii - Hindi and Tamil Question Answering. The comp

abhishek thakur 33 Dec 18, 2022
Rhasspy 673 Dec 28, 2022
ChessCoach is a neural network-based chess engine capable of natural-language commentary.

ChessCoach is a neural network-based chess engine capable of natural-language commentary.

Chris Butner 380 Dec 03, 2022
Applied Natural Language Processing in the Enterprise - An O'Reilly Media Publication

Applied Natural Language Processing in the Enterprise This is the companion repo for Applied Natural Language Processing in the Enterprise, an O'Reill

Applied Natural Language Processing in the Enterprise 95 Jan 05, 2023
Lumped-element impedance calculator and frequency-domain plotter.

fastZ: Lumped-Element Impedance Calculator fastZ is a small tool for calculating and visualizing electrical impedance in Python. Features include: Sup

Wesley Hileman 47 Nov 18, 2022
IndoBERTweet is the first large-scale pretrained model for Indonesian Twitter. Published at EMNLP 2021 (main conference)

IndoBERTweet 🐦 🇮🇩 1. Paper Fajri Koto, Jey Han Lau, and Timothy Baldwin. IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effe

IndoLEM 40 Nov 30, 2022
Longformer: The Long-Document Transformer

Longformer Longformer and LongformerEncoderDecoder (LED) are pretrained transformer models for long documents. ***** New December 1st, 2020: Longforme

AI2 1.6k Dec 29, 2022
Two-stage text summarization with BERT and BART

Two-Stage Text Summarization Description We experiment with a 2-stage summarization model on CNN/DailyMail dataset that combines the ability to filter

Yukai Yang (Alexis) 6 Oct 22, 2022
Simple program that translates the name of files into English

Simple program that translates the name of files into English. Useful for when editing/inspecting programs that were developed in a foreign language.

0 Dec 22, 2021
Yomichad - a Japanese pop-up dictionary that can display readings and English definitions of Japanese words

Yomichad is a Japanese pop-up dictionary that can display readings and English definitions of Japanese words, kanji, and optionally named entities. It is similar to yomichan, 10ten, and rikaikun in s

Jonas Belouadi 7 Nov 07, 2022
The training code for the 4th place model at MDX 2021 leaderboard A.

The training code for the 4th place model at MDX 2021 leaderboard A.

Chin-Yun Yu 32 Dec 18, 2022
Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning

GenSen Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning Sandeep Subramanian, Adam Trischler, Yoshua B

Maluuba Inc. 309 Oct 19, 2022
Conversational-AI-ChatBot - Intelligent ChatBot built with Microsoft's DialoGPT transformer to make conversations with human users!

Conversational AI ChatBot Intelligent ChatBot built with Microsoft's DialoGPT transformer to make conversations with human users! In this project? Thi

Rajkumar Lakshmanamoorthy 6 Nov 30, 2022
Bu Chatbot, Konya Bilim Merkezi Yen için tasarlanmış olan bir projedir.

chatbot Bu Chatbot, Konya Bilim Merkezi Yeni Ufuklar Sergisi için 2021 Yılında tasarlanmış olan bir projedir. Chatbot Python ortamında yazılmıştır. Sö

Emre Özkul 1 Feb 23, 2022
Fixes mojibake and other glitches in Unicode text, after the fact.

ftfy: fixes text for you print(fix_encoding("(ง'⌣')ง")) (ง'⌣')ง Full documentation: https://ftfy.readthedocs.org Testimonials “My life is li

Luminoso Technologies, Inc. 3.4k Dec 29, 2022