(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.

Overview

BERT Convolutions

Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains experiments for integrating convolutions and self-attention in BERT models. Code is adapted from Huggingface Transformers. Model code is in src/transformers/modeling_bert.py. Run on Python 3.6.9 and Pytorch 1.7.1 (see requirements.txt).

Training

To train tokenizer, use custom_scripts/train_spm_tokenizer.py. To pre-train BERT with a plain text dataset:

python3 run_language_modeling.py \
--model_type=bert \
--tokenizer_name="./data/sentencepiece/spm.model" \
--config_name="./data/bert_base_config.json" \
--do_train --mlm --line_by_line \
--train_data_file="./data/training_text.txt" \
--per_device_train_batch_size=32 \
--save_steps=25000 \
--block_size=128 \
--max_steps=1000000 \
--warmup_steps=10000 \
--learning_rate=0.0001 --adam_epsilon=1e-6 --weight_decay=0.01 \
--output_dir="./bert-experiments/bert"

The code above produces a cached file of examples (a list of lists of token indices). Each example is an un-truncated and un-padded sentence pair (but includes [CLS] and [SEP] tokens). Convert these lists to an iterable text file using custom_scripts/shuffle_cached_dataset.py. Then, you can pre-train BERT using an iterable dataset (saving memory):

python3 run_language_modeling.py \
--model_type=bert \
--tokenizer_name="./data/sentencepiece/spm.model" \
--config_name="./data/bert_base_config.json" \
--do_train --mlm --train_iterable --line_by_line \
--train_data_file="./data/iterable_pairs_train.txt" \
--per_device_train_batch_size=32 \
--save_steps=25000 \
--block_size=128 \
--max_steps=1000000 \
--warmup_steps=10000 \
--learning_rate=0.0001 --adam_epsilon=1e-6 --weight_decay=0.01 \
--output_dir="./bert-experiments/bert"

Optional flags to change BERT architecture when pre-training from scratch:
In the following, qk uses query/key self-attention, convfixed is a fixed lightweight convolution, convq is query-based dynamic lightweight convolution (relative embeddings), convk is a key-based dynamic lightweight convolution, and convolution is a fixed depthwise convolution.

--attention_kernel="qk_convfixed_convq_convk [num_positions_each_dir]"

Remove absolute position embeddings:

--remove_position_embeddings

Convolutional values, using depthwise-separable (depth) convolutions for half of heads (mixed), and using no activation function (no_act) between the depthwise and pointwise convolutions:

--value_forward="convolution_depth_mixed_no_act [num_positions_each_dir] [num_convolution_groups]"

Convolutional queries/keys for half of heads:

--qk="convolution_depth_mixed_no_act [num_positions_each_dir] [num_convolution_groups]"

Fine-tuning

Training and evaluation for downstream GLUE tasks (note: batch size represents max batch size, because batch size is adjusted for each task):

python3 run_glue.py \
--data_dir="./glue-data/data-tsv" \
--task_name=ALL \
--save_steps=9999999 \
--max_seq_length 128 \
--per_device_train_batch_size 99999 \
--tokenizer_name="./data/sentencepiece/spm.model" \
--model_name_or_path="./bert-experiments/bert" \
--output_dir="./bert-experiments/bert-glue" \
--hyperparams="electra_base" \
--do_eval \
--do_train

Prediction

Run the fine-tuned models on the GLUE test set:
This adds a file with test set predictions to each GLUE task directory.

python3 run_glue.py \
--data_dir="./glue-data/data-tsv" \
--task_name=ALL \
--save_steps=9999999 \
--max_seq_length 128 \
--per_device_train_batch_size 99999 \
--tokenizer_name="./data/sentencepiece/spm.model" \
--model_name_or_path="./bert-experiments/placeholder" \
--output_dir="./bert-experiments/bert-glue" \
--hyperparams="electra_base" \
--do_predict

Then, test results can be compiled into one directory. The test_results directory will contain test predictions, using the fine-tuned model with the highest dev set score for each task. The files in test_results can be zipped and submitted to the GLUE benchmark site for evaluation.

python3 custom_scripts/parse_glue.py \
--input="./bert-experiments/bert-glue" \
--test_dir="./bert-experiments/bert-glue/test_results"

Citation

@inproceedings{chang-etal-2021-convolutions,
  title={Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models},
  author={Tyler Chang and Yifan Xu and Weijian Xu and Zhuowen Tu},
  booktitle={ACL-IJCNLP 2021},
  year={2021},
}
Owner
mlpc-ucsd
mlpc-ucsd
This is a project of data parallel that running on NLP tasks.

This is a project of data parallel that running on NLP tasks.

2 Dec 12, 2021
This is a MD5 password/passphrase brute force tool

CROWES-PASS-CRACK-TOOl This is a MD5 password/passphrase brute force tool How to install: Do 'git clone https://github.com/CROW31/CROWES-PASS-CRACK-TO

9 Mar 02, 2022
The proliferation of disinformation across social media has led the application of deep learning techniques to detect fake news.

Fake News Detection Overview The proliferation of disinformation across social media has led the application of deep learning techniques to detect fak

Kushal Shingote 1 Feb 08, 2022
Full Spectrum Bioinformatics - a free online text designed to introduce key topics in Bioinformatics using the Python

Full Spectrum Bioinformatics is a free online text designed to introduce key topics in Bioinformatics using the Python programming language. The text is written in interactive Jupyter Notebooks, whic

Jesse Zaneveld 33 Dec 28, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 07, 2023
Transformation spoken text to written text

Transformation spoken text to written text This model is used for formatting raw asr text output from spoken text to written text (Eg. date, number, i

Nguyen Binh 16 Dec 28, 2022
Finding Label and Model Errors in Perception Data With Learned Observation Assertions

Finding Label and Model Errors in Perception Data With Learned Observation Assertions This is the project page for Finding Label and Model Errors in P

Stanford Future Data Systems 17 Oct 14, 2022
Original implementation of the pooling method introduced in "Speaker embeddings by modeling channel-wise correlations"

Speaker-Embeddings-Correlation-Pooling This is the original implementation of the pooling method introduced in "Speaker embeddings by modeling channel

Themos Stafylakis 10 Apr 30, 2022
Задания КЕГЭ по информатике 2021 на Python

КЕГЭ 2021 на Python В этом репозитории мои решения типовых заданий КЕГЭ по информатике в 2021 году, БЕСПЛАТНО! Задания Взяты с https://inf-ege.sdamgia

8 Oct 13, 2022
A curated list of efficient attention modules

awesome-fast-attention A curated list of efficient attention modules

Sepehr Sameni 891 Dec 22, 2022
This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Joseph Imperial 1 Oct 05, 2021
A fast and lightweight python-based CTC beam search decoder for speech recognition.

pyctcdecode A fast and feature-rich CTC beam search decoder for speech recognition written in Python, providing n-gram (kenlm) language model support

Kensho 315 Dec 21, 2022
Pretrain CPM - 大规模预训练语言模型的预训练代码

CPM-Pretrain 版本更新记录 为了促进中文自然语言处理研究的发展,本项目提供了大规模预训练语言模型的预训练代码。项目主要基于DeepSpeed、Megatron实现,可以支持数据并行、模型加速、流水并行的代码。 安装 1、首先安装pytorch等基础依赖,再安装APEX以支持fp16。 p

Tsinghua AI 37 Dec 06, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Facebook Research 6.4k Dec 27, 2022
Toolkit for Machine Learning, Natural Language Processing, and Text Generation, in TensorFlow. This is part of the CASL project: http://casl-project.ai/

Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides

ASYML 2.3k Jan 07, 2023
Longformer: The Long-Document Transformer

Longformer Longformer and LongformerEncoderDecoder (LED) are pretrained transformer models for long documents. ***** New December 1st, 2020: Longforme

AI2 1.6k Dec 29, 2022
Curso práctico: NLP de cero a cien 🤗

Curso Práctico: NLP de cero a cien Comprende todos los conceptos y arquitecturas clave del estado del arte del NLP y aplícalos a casos prácticos utili

Somos NLP 147 Jan 06, 2023
TTS is a library for advanced Text-to-Speech generation.

TTS is a library for advanced Text-to-Speech generation. It's built on the latest research, was designed to achieve the best trade-off among ease-of-training, speed and quality. TTS comes with pretra

Mozilla 6.5k Jan 08, 2023
This repository contains (not all) code from my project on Named Entity Recognition in philosophical text

NERphilosophy 👋 Welcome to the github repository of my BsC thesis. This repository contains (not all) code from my project on Named Entity Recognitio

Ruben 1 Jan 27, 2022
AudioCLIP Extending CLIP to Image, Text and Audio

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023