Sample data associated with the Aurora-BP study

Overview

The Aurora-BP Study and Dataset

This repository contains sample code, sample data, and explanatory information for working with the Aurora-BP dataset released alongside the publication of the Aurora-BP study, i.e., Mieloszyk, Rebecca, et al. "A Comparison of Wearable Tonometry, Photoplethysmography, and Electrocardiography for Cuffless Measurement of Blood Pressure in an Ambulatory Setting." IEEE Journal of Biomedical and Health Informatics (2022). The dataset includes de-identified participant information, raw sensor data aligned with each measurement, and a wide variety of features derived from sensor data. The publishing of this dataset as well as the characterization of multiple feature groups across a broad population and multiple settings are intended to aid future cardiovascular research.

Note that the data contained in this repository represent a very small sample of the full dataset, meant only to illustrate the structure of the files and allow testing with the sample code. For access to the full dataset, see the Data Use Application section below.

Navigation:

  • docs:
    • Data file descriptions, a detailed overview of the Aurora-BP Study protocol, and supplemental results not included in the Aurora-BP Study publication
  • notebooks:
    • Sample Jupyter notebooks and environment files for basic analyses using Aurora-BP Study data
  • sample:
    • Example data files, to run sample Jupyter notebooks and provide researchers a direct look at the data format before application for full data access.

Citation

If you use this repository, part or all of the full dataset, and/or our paper as part of your research, please refer to the dataset as the Aurora-BP dataset and cite the publication as below:


Data Access

Data Access Committee

Requests for data access are reviewed by the Data Access Committee. During review, the submitting investigator and primary investigator may be contacted for verification. The information you will need to gather to submit a Data Use Application as well as a link to the form are listed below. For additional questions regarding data access, contact: [email protected]


Data Use Application

Full data files are stored separately from this repo within an Azure data lake. To gain access to these data files, a data use application (detailed below and on the data lake landing page) must be submitted. Any researcher may submit a data use application, which includes:

  • Principal investigator information
    • Academic credentials, affiliation, contact information, curriculum vitae, signature attesting accuracy of data use application
  • Additional investigator information
    • Academic credentials, affiliation, contact information
  • Research proposal
  • Acknowledgement to comply with data use agreement. Key points are listed below:
    • No sharing of data with anyone outside of approved PI and other specified investigators. New investigators must be reviewed.
    • No data use outside of stated proposal scope
    • No joining of data with other data sources
    • No attempt to identify participants, contact participants, or reconstruct PII
    • Storage with appropriate access control and best practices
    • You may publish (or present papers or articles) on your results from using the data provided that no confidential information of Microsoft and no Personal Information are included in any such publication or presentation
    • Any publication or presentation resulting from use of the data should include reference to the Aurora-BP Study, with full reference to the source publication when appropriate
    • Aurora-BP Study authors and Microsoft are under no obligation to provide any support or additional materials related to the use of these data
    • Aurora-BP Study authors and Microsoft are not liable for any losses, damages, or harms of any kind in connection to the use of these data
    • Aurora-BP Study authors and Microsoft are not responsible or liable for the accuracy, usefulness or availability of these data
    • Primary Investigator will provide a signature of attestation that they have read, understood, and accept the data use agreement
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
SciBERT is a BERT model trained on scientific text.

SciBERT is a BERT model trained on scientific text.

AI2 1.2k Dec 24, 2022
IEEEXtreme15.0 Questions And Answers

IEEEXtreme15.0 Questions And Answers IEEEXtreme is a global challenge in which teams of IEEE Student members – advised and proctored by an IEEE member

Dilan Perera 15 Oct 24, 2022
Spacy-ginza-ner-webapi - Named Entity Recognition API with spaCy and GiNZA

Named Entity Recognition API with spaCy and GiNZA I wrote a blog post about this

Yuki Okuda 3 Feb 27, 2022
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classification tasks of Chinese long text and short text, and supports sequence annotation tasks such as Chinese named entity recognition, part of speech tagging and word segmentation.

Pytorch-NLU,一个中文文本分类、序列标注工具包,支持中文长文本、短文本的多类、多标签分类任务,支持中文命名实体识别、词性标注、分词等序列标注任务。 Ptorch NLU, a Chinese text classification and sequence annotation toolkit, supports multi class and multi label classifi

186 Dec 24, 2022
💥 Fast State-of-the-Art Tokenizers optimized for Research and Production

Provides an implementation of today's most used tokenizers, with a focus on performance and versatility. Main features: Train new vocabularies and tok

Hugging Face 6.2k Dec 31, 2022
A text file containing 479k English words for all your dictionary/word-based projects e.g: auto-completion / autosuggestion

List Of English Words A text file containing over 466k English words. While searching for a list of english words (for an auto-complete tutorial) I fo

dwyl 8.5k Jan 03, 2023
⚡ Automatically decrypt encryptions without knowing the key or cipher, decode encodings, and crack hashes ⚡

Translations 🇩🇪 DE 🇫🇷 FR 🇭🇺 HU 🇮🇩 ID 🇮🇹 IT 🇳🇱 NL 🇧🇷 PT-BR 🇷🇺 RU 🇨🇳 ZH ➡️ Documentation | Discord | Installation Guide ⬅️ Fully autom

11.2k Jan 05, 2023
Google and Stanford University released a new pre-trained model called ELECTRA

Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For furth

Yiming Cui 1.2k Dec 30, 2022
Prithivida 690 Jan 04, 2023
A Python 3.6+ package to run .many files, where many programs written in many languages may exist in one file.

RunMany Intro | Installation | VSCode Extension | Usage | Syntax | Settings | About A tool to run many programs written in many languages from one fil

6 May 22, 2022
Blackstone is a spaCy model and library for processing long-form, unstructured legal text

Blackstone Blackstone is a spaCy model and library for processing long-form, unstructured legal text. Blackstone is an experimental research project f

ICLR&D 579 Jan 08, 2023
The ibet-Prime security token management system for ibet network.

ibet-Prime The ibet-Prime security token management system for ibet network. Features ibet-Prime is an API service that enables the issuance and manag

BOOSTRY 8 Dec 22, 2022
Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

Creating a python chatbot that Starbucks users can text to place an order + help cut wait time of a normal coffee.

2 Jan 20, 2022
Linear programming solver for paper-reviewer matching and mind-matching

Paper-Reviewer Matcher A python package for paper-reviewer matching algorithm based on topic modeling and linear programming. The algorithm is impleme

Titipat Achakulvisut 66 Jul 05, 2022
:house_with_garden: Fast & easy transfer learning for NLP. Harvesting language models for the industry. Focus on Question Answering.

(Framework for Adapting Representation Models) What is it? FARM makes Transfer Learning with BERT & Co simple, fast and enterprise-ready. It's built u

deepset 1.6k Dec 27, 2022
Türkçe küfürlü içerikleri bulan bir yapay zeka kütüphanesi / An ML library for profanity detection in Turkish sentences

"Kötü söz sahibine aittir." -Anonim Nedir? sinkaf uygunsuz yorumların bulunmasını sağlayan bir python kütüphanesidir. Farkı nedir? Diğer algoritmalard

KaraGoz 4 Feb 18, 2022
Lightweight utility tools for the detection of multiple spellings, meanings, and language-specific terminology in British and American English

Breame ( British English and American English) Breame is a lightweight Python package with a number of utility tools to aid in the detection of words

Charles 8 Oct 10, 2022
Source code and dataset for ACL 2019 paper "ERNIE: Enhanced Language Representation with Informative Entities"

ERNIE Source code and dataset for "ERNIE: Enhanced Language Representation with Informative Entities" Reqirements: Pytorch=0.4.1 Python3 tqdm boto3 r

THUNLP 1.3k Dec 30, 2022
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022