A workshop with several modules to help learn Feast, an open-source feature store

Overview

  Workshop: Learning Feast

This workshop aims to teach users about Feast, an open-source feature store.

We explain concepts & best practices by example, and also showcase how to address common use cases.

What is Feast?

Feast is an operational system for managing and serving machine learning features to models in production. It can serve features from a low-latency online store (for real-time prediction) or from an offline store (for batch scoring).

Why Feast?

Feast solves several common challenges teams face:

  1. Lack of feature reuse across teams
  2. Complex point-in-time-correct data joins for generating training data
  3. Difficulty operationalizing features for online inference while minimizing training / serving skew

Pre-requisites

This workshop assumes you have the following installed:

  • A local development environment that supports running Jupyter notebooks (e.g. VSCode with Jupyter plugin)
  • Python 3.7+
  • Java 11 (for Spark, e.g. brew install java11)
  • pip
  • Docker & Docker Compose (e.g. brew install docker docker-compose)
  • Terraform (docs)
  • AWS CLI
  • An AWS account setup with credentials via aws configure (e.g see AWS credentials quickstart)

Since we'll be learning how to leverage Feast in CI/CD, you'll also need to fork this workshop repository.

Caveats

Modules

See also: Feast quickstart, Feast x Great Expectations tutorial

These are meant mostly to be done in order, with examples building on previous concepts.

Time (min) Description Module   
30-45 Setting up Feast projects & CI/CD + powering batch predictions Module 0
15-20 Streaming ingestion & online feature retrieval with Kafka, Spark, Redis Module 1
10-15 Real-time feature engineering with on demand transformations Module 2
TBD Feature server deployment (embed, as a service, AWS Lambda) TBD
TBD Versioning features / models in Feast TBD
TBD Data quality monitoring in Feast TBD
TBD Batch transformations TBD
TBD Stream transformations TBD
Owner
Feast
Feature Store for Machine Learning
Feast
DLO8012: Natural Language Processing & CSL804: Computational Lab - II

NATURAL-LANGUAGE-PROCESSING-AND-COMPUTATIONAL-LAB-II DLO8012: NLP & CSL804: CL-II [SEMESTER VIII] Syllabus NLP - Reference Books THE WALL MEGA SATISH

AMEY THAKUR 7 Apr 28, 2022
Natural language Understanding Toolkit

Natural language Understanding Toolkit TOC Requirements Installation Documentation CLSCL NER References Requirements To install nut you need: Python 2

Peter Prettenhofer 119 Oct 08, 2022
Rhyme with AI

Local development Create a conda virtual environment and activate it: conda env create --file environment.yml conda activate rhyme-with-ai Install the

GoDataDriven 28 Nov 21, 2022
2021 AI CUP Competition on Traditional Chinese Scene Text Recognition - Intermediate Contest

繁體中文場景文字辨識 程式碼說明 組別:這就是我 成員:蔣明憲 唐碩謙 黃玥菱 林冠霆 蕭靖騰 目錄 環境套件 安裝方式 資料夾布局 前處理-製作偵測訓練註解檔 前處理-製作分類訓練樣本 part.py : 從 json 裁切出分類訓練樣本 Class.py : 將切出來的樣本按照文字分類到各資料夾

HuanyueTW 3 Jan 14, 2022
Natural Language Processing at EDHEC, 2022

Natural Language Processing Here you will find the teaching materials for the "Natural Language Processing" course at EDHEC Business School, 2022 What

1 Feb 04, 2022
Share constant definitions between programming languages and make your constants constant again

Introduction Reconstant lets you share constant and enum definitions between programming languages. Constants are defined in a yaml file and converted

Natan Yellin 47 Sep 10, 2022
Mirco Ravanelli 2.3k Dec 27, 2022
Natural language computational chemistry command line interface.

nlcc Install pip install nlcc Must have Open-AI Codex key: export OPENAI_API_KEY=your key here then nlcc key bindings ctrl-w copy to clipboard (Note

Andrew White 37 Dec 14, 2022
DeepAmandine is an artificial intelligence that allows you to talk to it for hours, you won't know the difference.

DeepAmandine This is an artificial intelligence based on GPT-3 that you can chat with, it is very nice and makes a lot of jokes. We wish you a good ex

BuyWithCrypto 3 Apr 19, 2022
A complete NLP guideline for enthusiasts

NLP-NINJA A complete guide for Natural Language Processing in Python Table of Contents S.No. Topic Level Meaning 1 Tokenization 🤍 Beginner 2 Stemming

MAINAK CHAUDHURI 22 Dec 27, 2022
HAN2HAN : Hangul Font Generation

HAN2HAN : Hangul Font Generation

Changwoo Lee 36 Dec 28, 2022
Galois is an auto code completer for code editors (or any text editor) based on OpenAI GPT-2.

Galois is an auto code completer for code editors (or any text editor) based on OpenAI GPT-2. It is trained (finetuned) on a curated list of approximately 45K Python (~470MB) files gathered from the

Galois Autocompleter 91 Sep 23, 2022
Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
UniSpeech - Large Scale Self-Supervised Learning for Speech

UniSpeech The family of UniSpeech: WavLM (arXiv): WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing UniSpeech (ICML 202

Microsoft 281 Dec 15, 2022
Dust model dichotomous performance analysis

Dust-model-dichotomous-performance-analysis Using a collated dataset of 90,000 dust point source observations from 9 drylands studies from around the

1 Dec 17, 2021
A PyTorch implementation of VIOLET

VIOLET: End-to-End Video-Language Transformers with Masked Visual-token Modeling A PyTorch implementation of VIOLET Overview VIOLET is an implementati

Tsu-Jui Fu 119 Dec 30, 2022
🏆 • 5050 most frequent words in 109 languages

🏆 Most Common Words Multilingual 5000 most frequent words in 109 languages. Uses wordfrequency.info as a source. 🔗 License source code license data

14 Nov 24, 2022
BERN2: an advanced neural biomedical namedentity recognition and normalization tool

BERN2 We present BERN2 (Advanced Biomedical Entity Recognition and Normalization), a tool that improves the previous neural network-based NER tool by

DMIS Laboratory - Korea University 99 Jan 06, 2023
In this project, we compared Spanish BERT and Multilingual BERT in the Sentiment Analysis task.

Applying BERT Fine Tuning to Sentiment Classification on Amazon Reviews Abstract Sentiment analysis has made great progress in recent years, due to th

Alexander Leonardo Lique Lamas 5 Jan 03, 2022