simpleT5 is built on top of PyTorch-lightning⚡️ and Transformers🤗 that lets you quickly train your T5 models.

Overview

simplet5

Quickly train T5 models in just 3 lines of code + ONNX support

PyPI version License

simpleT5 is built on top of PyTorch-lightning ⚡️ and Transformers 🤗 that lets you quickly train your T5 models.

T5 models can be used for several NLP tasks such as summarization, QA, QG, translation, text generation, and more.

Here's a link to Medium article along with an example colab notebook

Install

pip install --upgrade simplet5

Usage

simpleT5 for summarization task Open In Collab

# import
from simplet5 import SimpleT5

# instantiate
model = SimpleT5()

# load
model.from_pretrained("t5","t5-base")

# train
model.train(train_df=train_df, # pandas dataframe with 2 columns: source_text & target_text
            eval_df=eval_df, # pandas dataframe with 2 columns: source_text & target_text
            source_max_token_len = 512, 
            target_max_token_len = 128,
            batch_size = 8,
            max_epochs = 5,
            use_gpu = True,
            outputdir = "outputs",
            early_stopping_patience_epochs = 0
            )

# load trained T5 model
model.load_model("t5","path/to/trained/model/directory", use_gpu=False)

# predict
model.predict("input text for prediction")

# need faster inference on CPU, get ONNX support
model.convert_and_load_onnx_model("path/to/T5 model/directory")
model.onnx_predict("input text for prediction")
Comments
  • Suppress the Output Models

    Suppress the Output Models

    Hello there!

    I'd like to ask if there is any possible way to eliminate all models, except for the last trained one. When I fine tune a model, it gives me X different models if I fine tune the model X epochs. I just need the last model and couldn't find a way to prevent writing those models to disk.

    Thanks!

    opened by bayismet 6
  • TypeError: forward() got an unexpected keyword argument 'cross_attn_head_mask In onnx_predict function

    TypeError: forward() got an unexpected keyword argument 'cross_attn_head_mask In onnx_predict function

    Hello, when I run the fine-tuned mt5 model under onnx, I get the following error:

    `TypeError Traceback (most recent call last) in ----> 1 model.onnx_predict(text)

    ~\AppData\Roaming\Python\Python38\site-packages\simplet5\simplet5.py in onnx_predict(self, source_text) 469 """ generates prediction from ONNX model """ 470 token = self.onnx_tokenizer(source_text, return_tensors="pt") --> 471 tokens = self.onnx_model.generate( 472 input_ids=token["input_ids"], 473 attention_mask=token["attention_mask"],

    C:\ProgramData\Anaconda3\lib\site-packages\torch\autograd\grad_mode.py in decorate_context(*args, **kwargs) 26 def decorate_context(*args, **kwargs): 27 with self.class(): ---> 28 return func(*args, **kwargs) 29 return cast(F, decorate_context) 30

    C:\ProgramData\Anaconda3\lib\site-packages\transformers\generation_utils.py in generate(self, input_ids, max_length, min_length, do_sample, early_stopping, num_beams, temperature, top_k, top_p, repetition_penalty, bad_words_ids, bos_token_id, pad_token_id, eos_token_id, length_penalty, no_repeat_ngram_size, encoder_no_repeat_ngram_size, num_return_sequences, max_time, max_new_tokens, decoder_start_token_id, use_cache, num_beam_groups, diversity_penalty, prefix_allowed_tokens_fn, output_attentions, output_hidden_states, output_scores, return_dict_in_generate, forced_bos_token_id, forced_eos_token_id, remove_invalid_values, synced_gpus, **model_kwargs) 1051 input_ids, expand_size=num_beams, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs 1052 ) -> 1053 return self.beam_search( 1054 input_ids, 1055 beam_scorer,

    C:\ProgramData\Anaconda3\lib\site-packages\transformers\generation_utils.py in beam_search(self, input_ids, beam_scorer, logits_processor, stopping_criteria, max_length, pad_token_id, eos_token_id, output_attentions, output_hidden_states, output_scores, return_dict_in_generate, synced_gpus, **model_kwargs) 1788 model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) 1789 -> 1790 outputs = self( 1791 **model_inputs, 1792 return_dict=True,

    C:\ProgramData\Anaconda3\lib\site-packages\torch\nn\modules\module.py in _call_impl(self, *input, **kwargs) 1049 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks 1050 or _global_forward_hooks or _global_forward_pre_hooks): -> 1051 return forward_call(*input, **kwargs) 1052 # Do not call functions when jit is used 1053 full_backward_hooks, non_full_backward_hooks = [], []

    TypeError: forward() got an unexpected keyword argument 'cross_attn_head_mask'`

    I tried to downgrade transformers and onnxruntime but the error still remains.

    opened by farshadfiruzi 6
  • colab error

    colab error

    When running google colab, the line below produced error:

    model.load_model("t5","outputs/SimpleT5-epoch-2-train-loss-0.9526", use_gpu=True)

    Error: 404 Client Error: Not Found for url: https://huggingface.co/outputs/SimpleT5-epoch-2-train-loss-0.9526/resolve/main/config.json

    Please help. Thanks a lot.

    opened by yzhang-github-pub 6
  • shows object has no attribute 'convert_and_load_onnx_model'

    shows object has no attribute 'convert_and_load_onnx_model'

    Shows the error AttributeError: 'SimpleT5' object has no attribute 'convert_and_load_onnx_model' while running the example notebook provided in the repository

    https://github.com/Shivanandroy/simpleT5/blob/main/examples/simpleT5-summarization.ipynb

    opened by pradeepdev-1995 4
  • Adding logger

    Adding logger

    With this change, users can provide a PyTorch Lightning logger object to the .train() method:

    from pytorch_lightning.loggers import WandbLogger
    
    wandb_logger = WandbLogger(project="my-project", name="run-name")
    
    model.train(
        train_df=train_df,
        eval_df=eval_df,
        logger=wandb_logger
    )
    
    opened by versae 3
  • codet5 support added

    codet5 support added

    Needed to use this package for my experiemnts,

    Salesforce/codet5-base uses a roberta tokenizer hence this pull request.

    users can now specify : model.from_pretrained("codet5","Salesforce/codet5-base")

    If you want to read through codet5

    Here are the links: https://huggingface.co/Salesforce/codet5-base

    Kind regards, Mosh

    opened by mosh98 3
  • byT5 with version 0.1.2

    byT5 with version 0.1.2

    hi there, it seems that the newest version of simpleT5 does no longer work with byT5. The line elif model_type == "byt5": is commented out. The newest version of transformers seems to use a new type of tokenizer T5TokenizerFast and ByT5TokenizerFast does not exist. Any ideas about how to fix that?

    opened by kimgerdes 2
  • Is there any option for fine-tuning mt5 models instead of training from scratch?

    Is there any option for fine-tuning mt5 models instead of training from scratch?

    Hi, Thanks for the amazing simpleT5 package. I use the following script to train a mt5 model for summarization task.

    from simplet5 import SimpleT5

    model = SimpleT5()

    model.from_pretrained(model_type="mt5", model_name="google/mt5-small")

    model.train(train_df=train_df, eval_df=test_df, source_max_token_len=256, target_max_token_len=64, batch_size=8, max_epochs=3, use_gpu=True, outputdir = "outputs", early_stopping_patience_epochs = 0, )

    When I run this code, training start from scratch. My question is that is there any flag to fine-tune the mt5 model instead of training from scratch?

    opened by farshadfiruzi 2
  • Kernel dies every time when I start training the model

    Kernel dies every time when I start training the model

    Hi Shiva, Thank you very much for a such clean and neat wrapper for training ML models. I am using t5(precisely t5-small) as the base to train my model for summarization. I use the dataset using datasets from huggingface. However, everytime when I initiate the training code, the kernel dies and restarts. Any help here is much appreciated!

    Following is my code.

    Import dependencies

    %%capture
    !pip install --user simplet5==0.1.4
    !pip install transformers
    !pip install wandb
    !pip install pandas
    !pip install datasets
    !pip install --user simpletransformers
    

    Load data using datasets from huggingface

    import pandas as pd
    import warnings
    warnings.filterwarnings("ignore")
    from datasets import load_dataset
    dataset = load_dataset("scitldr")
    

    Preparing the train and eval data

    train_df = dataset["train"].to_pandas().copy()
    train_df.drop(columns=["source_labels","rouge_scores","paper_id"],inplace=True)
    train_df.rename(columns={"source":"source_text","target":"target_text"}, inplace=True)
    train_df.count() ## No NaN found - zero 1992 dataset
    
    train_df['source_text'] = train_df['source_text'].astype('str').str.rstrip(']\'')
    train_df['source_text'] = train_df['source_text'].astype('str').str.lstrip('[\'')
    train_df['target_text'] = train_df['target_text'].astype('str').str.rstrip(']\'')
    train_df['target_text'] = train_df['target_text'].astype('str').str.lstrip('[\'')
    
    train_df["source_text"]=train_df["source_text"].str.replace('\'','')
    train_df["target_text"]=train_df["target_text"].str.replace('\'','')
    train_df["source_text"]="summarize: "+train_df["source_text"]
    train_df.to_csv("train.csv")
    
    eval_df = dataset["validation"].to_pandas().copy()
    eval_df.drop(columns=["source_labels","rouge_scores","paper_id"],inplace=True)
    eval_df.rename(columns={"source":"source_text","target":"target_text"}, inplace=True)
    eval_df.count() ## No NaN found - zero 1992 dataset
    
    eval_df['source_text'] = eval_df['source_text'].astype('str').str.rstrip(']\'')
    eval_df['source_text'] = eval_df['source_text'].astype('str').str.lstrip('[\'')
    eval_df['target_text'] = eval_df['target_text'].astype('str').str.rstrip(']\'')
    eval_df['target_text'] = eval_df['target_text'].astype('str').str.lstrip('[\'')
    
    eval_df["source_text"]=train_df["source_text"].str.replace('\'','')
    eval_df["target_text"]=train_df["target_text"].str.replace('\'','')
    eval_df["source_text"]="summarize: "+train_df["source_text"]
    eval_df.to_csv("eval.csv")
    

    Loading simpleT5 and wandb_logger and finally loading the model and training code

    from simplet5 import SimpleT5
    from pytorch_lightning.loggers import WandbLogger
    wandb_logger = WandbLogger(project="ask-poc-logger")
    model = SimpleT5()
    model.from_pretrained("t5","t5-small")
    model.train(train_df=train_df[0:100], 
                eval_df=eval_df[0:100],
                source_max_token_len = 512, 
                target_max_token_len = 100,
                batch_size = 2,
                max_epochs = 3,
                use_gpu = True,
                outputdir = "outputs",
                logger = wandb_logger
                )
    

    I am running this code on the following machine. A vertex AI workbench from Google Cloud. N1-Standard-16 machine type with 16 core and 60 GB Memory. And added GPU P100. Any help is much appreciated ! Thanks in advance!

    opened by kkrishnan90 1
  • Is the task string necessary?

    Is the task string necessary?

    Hi,

    I have fine-tuned the model to write a compliment for a person, given the person's profile and it works pretty well. In the training examples, I haven't prepended the string 'summarize :' to the source_string column entries. Is it necessary (does it lead to better results) to prepend the string indicating the task?

    opened by nikogamulin 1
  • Push finished model

    Push finished model

    Is there a way of automatically pushing the checkpoints to the HuggingFace hub? I am running this mainly in Colab. Works great but often the Colab has timed out, and the checkpoints are lost.

    opened by peregilk 2
  • Unicode Charecter training issue

    Unicode Charecter training issue

    I tried to train My model for translating English to Bengali. After Training when I run the code, The output is not Unicode Bengali character.

    I Eat Rice (eng)=> আমি ভাত খাই (Bn)

    this type of data is input to the model while training. After complete, when I tested the model by inputting "I Eat Rice" I was expecting "আমি ভাত খাই" as output. But instead of this, the model gave me "Ich esse Reis." I dont know what kind of language is this. Its not related to bengali.

    opened by rahat10120141 5
  • ValueError: text input must of type `str` (single example), `List[str]` (batch or single pretokenized example) or `List[List[str]]` (batch of pretokenized examples).

    ValueError: text input must of type `str` (single example), `List[str]` (batch or single pretokenized example) or `List[List[str]]` (batch of pretokenized examples).

    import soundfile as sf from scipy.io import wavfile from IPython.display import Audio from transformers import Wav2Vec2ForCTC, Wav2Vec2CTCTokenizer

    import speech_recognition as sr import io from pydub import AudioSegment

    tokenizer = Wav2Vec2CTCTokenizer.from_pretrained("facebook/wav2vec2-base-960h") model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")

    r = sr.Recognizer() with sr.Microphone(sample_rate=16000) as source: print("speak") while True: audio = r.listen(source) data = io.BytesIO(audio.get_wav_data()) clip = AudioSegment.from_file(data) x = torch.FloatTensor(clip.get_array_of_samples()) print(x)

        inputs = tokenizer(x, sampling_rate=16000, return_tensors='pt', padding='longest').input_values
        logits = model(inputs).logits
        tokens = torch.argmax(logits, axis=-1)
        text = tokenizer.batch_decode(tokens)
    
        print('you said: ', str(text).lower())
    
    opened by Ushanjay 1
  • Saved model name not customizable

    Saved model name not customizable

    def training_epoch_end(self, training_step_outputs): """ save tokenizer and model on epoch end """ self.average_training_loss = np.round( torch.mean(torch.stack([x["loss"] for x in training_step_outputs])).item(), 4, ) path = f"{self.outputdir}/simplet5-epoch-{self.current_epoch}-train-loss-{str(self.average_training_loss)}-val-loss-{str(self.average_validation_loss)}"

    Will be very helpful if you can allow the name customizable (note the 'path' assignment).

    Btw, SimpleT5 is simply cool!

    opened by ke-lara 0
Releases(v0.1.4)
  • v0.1.4(Feb 15, 2022)

    SimpleT5 v0.1.4

    • Added support for all the pytorch-lightning supported loggers #11
    • Added support to save model only at last epoch #21
    • Added dataloader_num_workers parameter to.train( ) method to specify number of worker in train/test/val dataloader #19
    • fixed warnings and made compatible with latest transformers and pytorch-lightning
    Source code(tar.gz)
    Source code(zip)
  • v0.1.3(Sep 4, 2021)

  • version-0.1.0(Jul 13, 2021)

    SimpleT5 - version 0.1.0

    • Supports ByT5 model - Thanks to @mapmeld for his contribution
    from simplet5 import SimpleT5
    model = SimpleT5()
    model.from_pretrained("byt5", "google/byt5-small")
    
    • Added precision flag to support mixed precision training
    # train
    model.train(train_df=train_df, # pandas dataframe with 2 columns: source_text & target_text
                eval_df=eval_df, # pandas dataframe with 2 columns: source_text & target_text
                source_max_token_len = 512, 
                target_max_token_len = 128,
                batch_size = 8,
                max_epochs = 5,
                use_gpu = True,
                outputdir = "outputs",
                early_stopping_patience_epochs = 0,
                precision = 32
                )
    
    Source code(tar.gz)
    Source code(zip)
Owner
Shivanand Roy
Data Scientist.
Shivanand Roy
Python powered crossword generator with database with 20k+ polish words

crossword_generator Generate simple crossword puzzle from words and definitions fetched from krzyżowki.edu.pl endpoints -/ string:word - returns js

0 Jan 04, 2022
Estimation of the CEFR complexity score of a given word, sentence or text.

NLP-Swedish … allows to estimate CEFR (Common European Framework of References) complexity score of a given word, sentence or text. CEFR scores come f

3 Apr 30, 2022
Addon for adding subtitle files to blender VSE as Text sequences. Using pysub2 python module.

Import Subtitles for Blender VSE Addon for adding subtitle files to blender VSE as Text sequences. Using pysub2 python module. Supported formats by py

4 Feb 27, 2022
SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Jan 07, 2023
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.

State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 🤗 Transformers provides thousands of pretrained models to perform tasks o

Hugging Face 77.3k Jan 03, 2023
Get list of common stop words in various languages in Python

Python Stop Words Table of contents Overview Available languages Installation Basic usage Python compatibility Overview Get list of common stop words

Alireza Savand 142 Dec 21, 2022
Speech to text streamlit app

Speech to text Streamlit-app! 👄 This speech to text recognition is powered by t

Charly Wargnier 9 Jan 01, 2023
基于GRU网络的句子判断程序/A program based on GRU network for judging sentences

SentencesJudger SentencesJudger 是一个基于GRU神经网络的句子判断程序,基本的功能是判断文章中的某一句话是否为一个优美的句子。 English 如何使用SentencesJudger 确认Python运行环境 安装pyTorch与LTP python3 -m pip

8 Mar 24, 2022
FactSumm: Factual Consistency Scorer for Abstractive Summarization

FactSumm: Factual Consistency Scorer for Abstractive Summarization FactSumm is a toolkit that scores Factualy Consistency for Abstract Summarization W

devfon 83 Jan 09, 2023
A python package for deep multilingual punctuation prediction.

This python library predicts the punctuation of English, Italian, French and German texts. We developed it to restore the punctuation of transcribed spoken language.

Oliver Guhr 27 Dec 22, 2022
Collection of scripts to pinpoint obfuscated code

Obfuscation Detection (v1.0) Author: Tim Blazytko Automatically detect control-flow flattening and other state machines Description: Scripts and binar

Tim Blazytko 230 Nov 26, 2022
Pretty-doc - Composable text objects with python

pretty-doc from __future__ import annotations from dataclasses import dataclass

Taine Zhao 2 Jan 17, 2022
TFIDF-based QA system for AIO2 competition

AIO2 TF-IDF Baseline This is a very simple question answering system, which is developed as a lightweight baseline for AIO2 competition. In the traini

Masatoshi Suzuki 4 Feb 19, 2022
Application for shadowing Chinese.

chinese-shadowing Simple APP for shadowing chinese. With this application, it is very easy to record yourself, play the sound recorded and listen to s

Thomas Hirtz 5 Sep 06, 2022
A Facebook Messenger Chatbot using NLP

A Facebook Messenger Chatbot using NLP This project is about creating a messenger chatbot using basic NLP techniques and models like Logistic Regressi

6 Nov 20, 2022
Toy example of an applied ML pipeline for me to experiment with MLOps tools.

Toy Machine Learning Pipeline Table of Contents About Getting Started ML task description and evaluation procedure Dataset description Repository stru

Shreya Shankar 190 Dec 21, 2022
🐍 A hyper-fast Python module for reading/writing JSON data using Rust's serde-json.

A hyper-fast, safe Python module to read and write JSON data. Works as a drop-in replacement for Python's built-in json module. This is alpha software

Matthias 479 Jan 01, 2023
硕士期间自学的NLP子任务,供学习参考

NLP_Chinese_down_stream_task 自学的NLP子任务,供学习参考 任务1 :短文本分类 (1).数据集:THUCNews中文文本数据集(10分类) (2).模型:BERT+FC/LSTM,Pytorch实现 (3).使用方法: 预训练模型使用的是中文BERT-WWM, 下载地

12 May 31, 2022
CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N

Meta Research 29 Nov 30, 2022
Chinese Grammatical Error Diagnosis

nlp-CGED Chinese Grammatical Error Diagnosis 中文语法纠错研究 基于序列标注的方法 所需环境 Python==3.6 tensorflow==1.14.0 keras==2.3.1 bert4keras==0.10.6 笔者使用了开源的bert4keras

12 Nov 25, 2022