A toolkit for document-level event extraction, containing some SOTA model implementations

Overview

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker

Source code for ACL-IJCNLP 2021 Long paper: Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker.

Our code is based on Doc2EDAG.

0. Introduction

Document-level event extraction aims to extract events within a document. Different from sentence-level event extraction, the arguments of an event record may scatter across sentences, which requires a comprehensive understanding of the cross-sentence context. Besides, a document may express several correlated events simultaneously, and recognizing the interdependency among them is fundamental to successful extraction. To tackle the aforementioned two challenges, We propose a novel heterogeneous Graph-based Interaction Model with a Tracker (GIT). A graph-based interaction network is introduced to capture the global context for the scattered event arguments across sentences with different heterogeneous edges. We also decode event records with a Tracker module, which tracks the extracted event records, so that the interdependency among events is taken into consideration. Our approach delivers better results over the state-of-the-art methods, especially in cross-sentence events and multiple events scenarios.

  • Architecture model overview

  • Overall Results

1. Package Description

GIT/
├─ dee/
    ├── __init__.py
    ├── base_task.py
    ├── dee_task.py
    ├── ner_task.py
    ├── dee_helper.py: data features constrcution and evaluation utils
    ├── dee_metric.py: data evaluation utils
    ├── config.py: process command arguments
    ├── dee_model.py: GIT model
    ├── ner_model.py
    ├── transformer.py: transformer module
    ├── utils.py: utils
├─ run_dee_task.py: the main entry
├─ train_multi.sh
├─ run_train.sh: script for training (including evaluation)
├─ run_eval.sh: script for evaluation
├─ Exps/: experiment outputs
├─ Data.zip
├─ Data: unzip Data.zip
├─ LICENSE
├─ README.md

2. Environments

  • python (3.6.9)
  • cuda (11.1)
  • Ubuntu-18.0.4 (5.4.0-73-generic)

3. Dependencies

  • numpy (1.19.5)
  • torch (1.8.1+cu111)
  • pytorch-pretrained-bert (0.4.0)
  • dgl-cu111 (0.6.1)
  • tensorboardX (2.2)

PS: The environments and dependencies listed here is different from what we use in our paper, so the results may be a bit different.

4. Preparation

  • Unzip Data.zip and you can get an Data folder, where the training/dev/test data locate.

5. Training

>> bash run_train.sh

6. Evaluation

>> bash run_eval.sh

(The evaluation is also conducted after the training)

7. License

This project is licensed under the MIT License - see the LICENSE file for details.

8. Citation

If you use this work or code, please kindly cite the following paper:

@inproceedings{xu-etal-2021-git,
    title = "Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker",
    author = "Runxin Xu  and
      Tianyu Liu  and
      Lei Li and
      Baobao Chang",
    booktitle = "The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021)",
    year = "2021",
    publisher = "Association for Computational Linguistics",
}
Owner
人生苦短 及时行乐
PocketSphinx is a lightweight speech recognition engine, specifically tuned for handheld and mobile devices, though it works equally well on the desktop

molten A minimal, extensible, fast and productive API framework for Python 3. Changelog: https://moltenframework.com/changelog.html Community: https:/

3.2k Dec 28, 2022
Data and code to support "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley)

anlp21 Course materials for "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley) Syllabus: http://people.ischool.berkeley.edu/~dba

David Bamman 48 Dec 06, 2022
English loanwords in the world's languages

Wiktionary as CLDF Content cldf1 and cldf2 contain cldf-conform data sets with a total of 2 377 756 entries about the vocabulary of all 1403 languages

Viktor Martinović 3 Jan 14, 2022
Perform sentiment analysis on textual data that people generally post on websites like social networks and movie review sites.

Sentiment Analyzer The goal of this project is to perform sentiment analysis on textual data that people generally post on websites like social networ

Madhusudan.C.S 53 Mar 01, 2022
Interpretable Models for NLP using PyTorch

This repo is deprecated. Please find the updated package here. https://github.com/EdGENetworks/anuvada Anuvada: Interpretable Models for NLP using PyT

Sandeep Tammu 19 Dec 17, 2022
Reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer: Self-Attention with Linear Complexity)

Linear Multihead Attention (Linformer) PyTorch Implementation of reproducing the Linear Multihead Attention introduced in Linformer paper (Linformer:

Kui Xu 58 Dec 23, 2022
🤖 Basic Financial Chatbot with handoff ability built with Rasa

Financial Services Example Bot This is an example chatbot demonstrating how to build AI assistants for financial services and banking with Rasa. It in

Mohammad Javad Hossieni 4 Aug 10, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
Implementation of paper Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoBERTa.

RoBERTaABSA This repo contains the code for NAACL 2021 paper titled Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoB

106 Nov 28, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
Document processing using transformers

Doc Transformers Document processing using transformers. This is still in developmental phase, currently supports only extraction of form data i.e (ke

Vishnu Nandakumar 13 Dec 21, 2022
NewsMTSC: (Multi-)Target-dependent Sentiment Classification in News Articles

NewsMTSC: (Multi-)Target-dependent Sentiment Classification in News Articles NewsMTSC is a dataset for target-dependent sentiment classification (TSC)

Felix Hamborg 79 Dec 30, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
A CSRankings-like index for speech researchers

Speech Rankings This project mimics CSRankings to generate an ordered list of researchers in speech/spoken language processing along with their possib

Mutian He 19 Nov 26, 2022
Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors"

SWRM Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors" Clone Clone th

14 Jan 03, 2023
Finetune gpt-2 in google colab

gpt-2-colab finetune gpt-2 in google colab sample result (117M) from retraining on A Tale of Two Cities by Charles Di

212 Jan 02, 2023
A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

NEC Laboratories Europe 13 Sep 08, 2022
Segmenter - Transformer for Semantic Segmentation

Segmenter - Transformer for Semantic Segmentation

592 Dec 27, 2022
A versatile token stream for handwritten parsers.

Writing recursive-descent parsers by hand can be quite elegant but it's often a bit more verbose than expected, especially when it comes to handling indentation and reporting proper syntax errors. Th

Valentin Berlier 8 Nov 30, 2022
SciBERT is a BERT model trained on scientific text.

SciBERT is a BERT model trained on scientific text.

AI2 1.2k Dec 24, 2022