A toolkit for document-level event extraction, containing some SOTA model implementations

Overview

Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker

Source code for ACL-IJCNLP 2021 Long paper: Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker.

Our code is based on Doc2EDAG.

0. Introduction

Document-level event extraction aims to extract events within a document. Different from sentence-level event extraction, the arguments of an event record may scatter across sentences, which requires a comprehensive understanding of the cross-sentence context. Besides, a document may express several correlated events simultaneously, and recognizing the interdependency among them is fundamental to successful extraction. To tackle the aforementioned two challenges, We propose a novel heterogeneous Graph-based Interaction Model with a Tracker (GIT). A graph-based interaction network is introduced to capture the global context for the scattered event arguments across sentences with different heterogeneous edges. We also decode event records with a Tracker module, which tracks the extracted event records, so that the interdependency among events is taken into consideration. Our approach delivers better results over the state-of-the-art methods, especially in cross-sentence events and multiple events scenarios.

  • Architecture model overview

  • Overall Results

1. Package Description

GIT/
├─ dee/
    ├── __init__.py
    ├── base_task.py
    ├── dee_task.py
    ├── ner_task.py
    ├── dee_helper.py: data features constrcution and evaluation utils
    ├── dee_metric.py: data evaluation utils
    ├── config.py: process command arguments
    ├── dee_model.py: GIT model
    ├── ner_model.py
    ├── transformer.py: transformer module
    ├── utils.py: utils
├─ run_dee_task.py: the main entry
├─ train_multi.sh
├─ run_train.sh: script for training (including evaluation)
├─ run_eval.sh: script for evaluation
├─ Exps/: experiment outputs
├─ Data.zip
├─ Data: unzip Data.zip
├─ LICENSE
├─ README.md

2. Environments

  • python (3.6.9)
  • cuda (11.1)
  • Ubuntu-18.0.4 (5.4.0-73-generic)

3. Dependencies

  • numpy (1.19.5)
  • torch (1.8.1+cu111)
  • pytorch-pretrained-bert (0.4.0)
  • dgl-cu111 (0.6.1)
  • tensorboardX (2.2)

PS: The environments and dependencies listed here is different from what we use in our paper, so the results may be a bit different.

4. Preparation

  • Unzip Data.zip and you can get an Data folder, where the training/dev/test data locate.

5. Training

>> bash run_train.sh

6. Evaluation

>> bash run_eval.sh

(The evaluation is also conducted after the training)

7. License

This project is licensed under the MIT License - see the LICENSE file for details.

8. Citation

If you use this work or code, please kindly cite the following paper:

@inproceedings{xu-etal-2021-git,
    title = "Document-level Event Extraction via Heterogeneous Graph-based Interaction Model with a Tracker",
    author = "Runxin Xu  and
      Tianyu Liu  and
      Lei Li and
      Baobao Chang",
    booktitle = "The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021)",
    year = "2021",
    publisher = "Association for Computational Linguistics",
}
Owner
人生苦短 及时行乐
Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Jifan Chen 22 Oct 21, 2022
Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET

Training COMET using seq2seq setting Use AutoModelForSeq2SeqLM in Huggingface Transformers to train COMET. The codes are modified from run_summarizati

tqfang 9 Dec 17, 2022
Connectionist Temporal Classification (CTC) decoding algorithms: best path, beam search, lexicon search, prefix search, and token passing. Implemented in Python.

CTC Decoding Algorithms Update 2021: installable Python package Python implementation of some common Connectionist Temporal Classification (CTC) decod

Harald Scheidl 736 Jan 03, 2023
Espresso: A Fast End-to-End Neural Speech Recognition Toolkit

Espresso Espresso is an open-source, modular, extensible end-to-end neural automatic speech recognition (ASR) toolkit based on the deep learning libra

Yiming Wang 919 Jan 03, 2023
A Practitioner's Guide to Natural Language Processing

Learn how to process, classify, cluster, summarize, understand syntax, semantics and sentiment of text data with the power of Python! This repository contains code and datasets used in my book, Text

Dipanjan (DJ) Sarkar 1.5k Jan 03, 2023
Super easy library for BERT based NLP models

Fast-Bert New - Learning Rate Finder for Text Classification Training (borrowed with thanks from https://github.com/davidtvs/pytorch-lr-finder) Suppor

Utterworks 1.8k Dec 27, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Facebook Research 6.4k Dec 27, 2022
Text Analysis & Topic Extraction on Android App user reviews

AndroidApp_TextAnalysis Hi, there! This is code archive for Text Analysis and Topic Extraction from user_reviews of Android App. Dataset Source : http

Fitrie Ratnasari 1 Feb 14, 2022
🤗🖼️ HuggingPics: Fine-tune Vision Transformers for anything using images found on the web.

🤗 🖼️ HuggingPics Fine-tune Vision Transformers for anything using images found on the web. Check out the video below for a walkthrough of this proje

Nathan Raw 185 Dec 21, 2022
Words-per-minute - A terminal app written in python utilizing the curses module that tests the user's ability to type

words-per-minute A terminal app written in python utilizing the curses module th

Tanim Islam 1 Jan 14, 2022
Mkdocs + material + cool stuff

Modern-Python-Doc-Example mkdocs + material + cool stuff Doc is live here Features out of the box amazing good looking website thanks to mkdocs.org an

Francesco Saverio Zuppichini 61 Oct 26, 2022
Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts

gpt-2-simple A simple Python package that wraps existing model fine-tuning and generation scripts for OpenAI's GPT-2 text generation model (specifical

Max Woolf 3.1k Jan 07, 2023
A website which allows you to play with the GPT-2 transformer

transformers A website which allows you to play with the GPT-2 model Built with ❤️ by raphtlw Table of contents Model Setup About Contributors Model T

raphtlw 2 Jan 27, 2022
HiFi DeepVariant + WhatsHap workflowHiFi DeepVariant + WhatsHap workflow

HiFi DeepVariant + WhatsHap workflow Workflow steps align HiFi reads to reference with pbmm2 call small variants with DeepVariant, using two-pass meth

William Rowell 2 May 14, 2022
Resources for "Natural Language Processing" Coursera course.

Natural Language Processing course resources This github contains practical assignments for Natural Language Processing course by Higher School of Eco

Advanced Machine Learning specialisation by HSE 1.1k Jan 01, 2023
A python package to fine-tune transformer-based models for named entity recognition (NER).

nerblackbox A python package to fine-tune transformer-based language models for named entity recognition (NER). Resources Source Code: https://github.

Felix Stollenwerk 13 Jul 30, 2022
A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.

Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It

Artifici Online Services inc. 74 Oct 07, 2022
TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

Yixuan Su 26 Oct 17, 2022
[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

Cambridge Language Technology Lab 61 Dec 10, 2022
Just a Basic like Language for Zeno INC

zeno-basic-language Just a Basic like Language for Zeno INC This is written in 100% python. this is basic language like language. so its not for big p

Voidy Devleoper 1 Dec 18, 2021