Natural language Understanding Toolkit

Related tags

Text Data & NLPnut
Overview

Natural language Understanding Toolkit

TOC

Requirements

To install nut you need:

  • Python 2.5 or 2.6
  • Numpy (>= 1.1)
  • Sparsesvd (>= 0.1.4) [1] (only CLSCL)

Installation

To clone the repository run,

git clone git://github.com/pprett/nut.git

To build the extension modules inplace run,

python setup.py build_ext --inplace

Add project to python path,

export PYTHONPATH=$PYTHONPATH:$HOME/workspace/nut

Documentation

CLSCL

An implementation of Cross-Language Structural Correspondence Learning (CLSCL). See [Prettenhofer2010] for a detailed description and [Prettenhofer2011] for more experiments and enhancements.

The data for cross-language sentiment classification that has been used in the above study can be found here [2].

clscl_train

Training script for CLSCL. See ./clscl_train --help for further details.

Usage:

$ ./clscl_train en de cls-acl10-processed/en/books/train.processed cls-acl10-processed/en/books/unlabeled.processed cls-acl10-processed/de/books/unlabeled.processed cls-acl10-processed/dict/en_de_dict.txt model.bz2 --phi 30 --max-unlabeled=50000 -k 100 -m 450 --strategy=parallel

|V_S| = 64682
|V_T| = 106024
|V| = 170706
|s_train| = 2000
|s_unlabeled| = 50000
|t_unlabeled| = 50000
debug: DictTranslator contains 5012 translations.
mutualinformation took 5.624 sec
select_pivots took 7.197 sec
|pivots| = 450
create_inverted_index took 59.353 sec
Run joblib.Parallel
[Parallel(n_jobs=-1)]: Done   1 out of 450 |elapsed:    9.1s remaining: 67.8min
[Parallel(n_jobs=-1)]: Done   5 out of 450 |elapsed:   15.2s remaining: 22.6min
[..]
[Parallel(n_jobs=-1)]: Done 449 out of 450 |elapsed: 14.5min remaining:    1.9s
train_aux_classifiers took 881.803 sec
density: 0.1154
Ut.shape = (100,170706)
learn took 903.588 sec
project took 175.483 sec

Note

If you have access to a hadoop cluster, you can use --strategy=hadoop to train the pivot classifiers even faster, however, make sure that the hadoop nodes have Bolt (feature-mask branch) [3] installed.

clscl_predict

Prediction script for CLSCL.

Usage:

$ ./clscl_predict cls-acl10-processed/en/books/train.processed model.bz2 cls-acl10-processed/de/books/test.processed 0.01
|V_S| = 64682
|V_T| = 106024
|V| = 170706
load took 0.681 sec
load took 0.659 sec
classes = {negative,positive}
project took 2.498 sec
project took 2.716 sec
project took 2.275 sec
project took 2.492 sec
ACC: 83.05

Named-Entity Recognition

A simple greedy left-to-right sequence labeling approach to named entity recognition (NER).

pre-trained models

We provide pre-trained named entity recognizers for place, person, and organization names in English and German. To tag a sentence simply use:

>>> from nut.io import compressed_load
>>> from nut.util import WordTokenizer

>>> tagger = compressed_load("model_demo_en.bz2")
>>> tokenizer = WordTokenizer()
>>> tokens = tokenizer.tokenize("Peter Prettenhofer lives in Austria .")

>>> # see tagger.tag.__doc__ for input format
>>> sent = [((token, "", ""), "") for token in tokens]
>>> g = tagger.tag(sent)  # returns a generator over tags
>>> print(" ".join(["/".join(tt) for tt in zip(tokens, g)]))
Peter/B-PER Prettenhofer/I-PER lives/O in/O Austria/B-LOC ./O

You can also use the convenience demo script ner_demo.py:

$ python ner_demo.py model_en_v1.bz2

The feature detector modules for the pre-trained models are en_best_v1.py and de_best_v1.py and can be found in the package nut.ner.features. In addition to baseline features (word presence, shape, pre-/suffixes) they use distributional features (brown clusters), non-local features (extended prediction history), and gazetteers (see [Ratinov2009]). The models have been trained on CoNLL03 [4]. Both models use neither syntactic features (e.g. part-of-speech tags, chunks) nor word lemmas, thus, minimizing the required pre-processing. Both models provide state-of-the-art performance on the CoNLL03 shared task benchmark for English [Ratinov2009]:

processed 46435 tokens with 4946 phrases; found: 4864 phrases; correct: 4455.
accuracy:  98.01%; precision:  91.59%; recall:  90.07%; FB1:  90.83
              LOC: precision:  91.69%; recall:  90.53%; FB1:  91.11  1648
              ORG: precision:  87.36%; recall:  85.73%; FB1:  86.54  1630
              PER: precision:  95.84%; recall:  94.06%; FB1:  94.94  1586

and German [Faruqui2010]:

processed 51943 tokens with 2845 phrases; found: 2438 phrases; correct: 2168.
accuracy:  97.92%; precision:  88.93%; recall:  76.20%; FB1:  82.07
              LOC: precision:  87.67%; recall:  79.83%; FB1:  83.57  957
              ORG: precision:  82.62%; recall:  65.92%; FB1:  73.33  466
              PER: precision:  93.00%; recall:  78.02%; FB1:  84.85  1015

To evaluate the German model on the out-domain data provided by [Faruqui2010] use the raw flag (-r) to write raw predictions (without B- and I- prefixes):

./ner_predict -r model_de_v1.bz2 clner/de/europarl/test.conll - | clner/scripts/conlleval -r
loading tagger... [done]
use_eph:  True
use_aso:  False
processed input in 40.9214s sec.
processed 110405 tokens with 2112 phrases; found: 2930 phrases; correct: 1676.
accuracy:  98.50%; precision:  57.20%; recall:  79.36%; FB1:  66.48
              LOC: precision:  91.47%; recall:  71.13%; FB1:  80.03  563
              ORG: precision:  43.63%; recall:  83.52%; FB1:  57.32  1673
              PER: precision:  62.10%; recall:  83.85%; FB1:  71.36  694

Note that the above results cannot be compared directly to the resuls of [Faruqui2010] since they use a slighly different setting (incl. MISC entity).

ner_train

Training script for NER. See ./ner_train --help for further details.

To train a conditional markov model with a greedy left-to-right decoder, the feature templates of [Rationov2009]_ and extended prediction history (see [Ratinov2009]) use:

./ner_train clner/en/conll03/train.iob2 model_rr09.bz2 -f rr09 -r 0.00001 -E 100 --shuffle --eph
________________________________________________________________________________
Feature extraction

min count:  1
use eph:  True
build_vocabulary took 24.662 sec
feature_extraction took 25.626 sec
creating training examples... build_examples took 42.998 sec
[done]
________________________________________________________________________________
Training

num examples: 203621
num features: 553249
num classes: 9
classes:  ['I-LOC', 'B-ORG', 'O', 'B-PER', 'I-PER', 'I-MISC', 'B-MISC', 'I-ORG', 'B-LOC']
reg: 0.00001000
epochs: 100
9 models trained in 239.28 seconds.
train took 282.374 sec

ner_predict

You can use the prediction script to tag new sentences formatted in CoNLL format and write the output to a file or to stdout. You can pipe the output directly to conlleval to assess the model performance:

./ner_predict model_rr09.bz2 clner/en/conll03/test.iob2 - | clner/scripts/conlleval
loading tagger... [done]
use_eph:  True
use_aso:  False
processed input in 11.2883s sec.
processed 46435 tokens with 5648 phrases; found: 5605 phrases; correct: 4799.
accuracy:  96.78%; precision:  85.62%; recall:  84.97%; FB1:  85.29
              LOC: precision:  87.29%; recall:  88.91%; FB1:  88.09  1699
             MISC: precision:  79.85%; recall:  75.64%; FB1:  77.69  665
              ORG: precision:  82.90%; recall:  78.81%; FB1:  80.80  1579
              PER: precision:  88.81%; recall:  91.28%; FB1:  90.03  1662

References

[1] http://pypi.python.org/pypi/sparsesvd/0.1.4
[2] http://www.webis.de/research/corpora/corpus-webis-cls-10/cls-acl10-processed.tar.gz
[3] https://github.com/pprett/bolt/tree/feature-mask
[4] For German we use the updated version of CoNLL03 by Sven Hartrumpf.
[Prettenhofer2010] Prettenhofer, P. and Stein, B., Cross-language text classification using structural correspondence learning. In Proceedings of ACL '10.
[Prettenhofer2011] Prettenhofer, P. and Stein, B., Cross-lingual adaptation using structural correspondence learning. ACM TIST (to appear). [preprint]
[Ratinov2009] (1, 2, 3) Ratinov, L. and Roth, D., Design challenges and misconceptions in named entity recognition. In Proceedings of CoNLL '09.
[Faruqui2010] (1, 2, 3) Faruqui, M. and Padó S., Training and Evaluating a German Named Entity Recognizer with Semantic Generalization. In Proceedings of KONVENS '10

Developer Notes

  • If you copy a new version of bolt into the externals directory make sure to run cython on the *.pyx files. If you fail to do so you will get a PickleError in multiprocessing.
Owner
Peter Prettenhofer
Peter Prettenhofer
pkuseg多领域中文分词工具; The pkuseg toolkit for multi-domain Chinese word segmentation

pkuseg:一个多领域中文分词工具包 (English Version) pkuseg 是基于论文[Luo et. al, 2019]的工具包。其简单易用,支持细分领域分词,有效提升了分词准确度。 目录 主要亮点 编译和安装 各类分词工具包的性能对比 使用方式 论文引用 作者 常见问题及解答 主要

LancoPKU 6k Dec 29, 2022
A Semi-Intelligent ChatBot filled with statistical and economical data for the Premier League.

MONEYBALL - ChatBot Module: 4006CEM, Class: B, Group: 5 Contributors: Jonas Djondo Roshan Kc Cole Samson Daniel Rodrigues Ihteshaam Naseer Kind remind

Jonas Djondo 1 Nov 18, 2021
A simple version of DeTR

DeTR-Lite A simple version of DeTR Before you enjoy this DeTR-Lite The purpose of this project is to allow you to learn the basic knowledge of DeTR. P

Jianhua Yang 11 Jun 13, 2022
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines

spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t

Kenneth Enevoldsen 32 Dec 29, 2022
Spam filtering made easy for you

spammy Author: Tasdik Rahman Latest version: 1.0.3 Contents 1 Overview 2 Features 3 Example 3.1 Accuracy of the classifier 4 Installation 4.1 Upgradin

Tasdik Rahman 137 Dec 18, 2022
A PyTorch-based model pruning toolkit for pre-trained language models

English | 中文说明 TextPruner是一个为预训练语言模型设计的模型裁剪工具包,通过轻量、快速的裁剪方法对模型进行结构化剪枝,从而实现压缩模型体积、提升模型速度。 其他相关资源: 知识蒸馏工具TextBrewer:https://github.com/airaria/TextBrewe

Ziqing Yang 231 Jan 08, 2023
[EMNLP 2021] LM-Critic: Language Models for Unsupervised Grammatical Error Correction

LM-Critic: Language Models for Unsupervised Grammatical Error Correction This repo provides the source code & data of our paper: LM-Critic: Language M

Michihiro Yasunaga 98 Nov 24, 2022
Connectionist Temporal Classification (CTC) decoding algorithms: best path, beam search, lexicon search, prefix search, and token passing. Implemented in Python.

CTC Decoding Algorithms Update 2021: installable Python package Python implementation of some common Connectionist Temporal Classification (CTC) decod

Harald Scheidl 736 Jan 03, 2023
aMLP Transformer Model for Japanese

aMLP-japanese Japanese aMLP Pretrained Model aMLPとは、Liu, Daiらが提案する、Transformerモデルです。 ざっくりというと、BERTの代わりに使えて、より性能の良いモデルです。 詳しい解説は、こちらの記事などを参考にしてください。 この

tanreinama 13 Aug 11, 2022
Named-entity recognition using neural networks. Easy-to-use and state-of-the-art results.

NeuroNER NeuroNER is a program that performs named-entity recognition (NER). Website: neuroner.com. This page gives step-by-step instructions to insta

Franck Dernoncourt 1.6k Dec 27, 2022
숭실대학교 컴퓨터학부 전공종합설계프로젝트

✨ 시각장애인을 위한 버스도착 알림 장치 ✨ 👀 개요 현대 사회에서 대중교통 위치 정보를 이용하여 사람들이 간단하게 이용할 대중교통의 정보를 얻고 쉽게 대중교통을 이용할 수 있다. 해당 정보는 각종 어플리케이션과 대중교통 이용시설에서 위치 정보를 제공하고 있지만 시각

taegyun 3 Jan 25, 2022
NLP topic mdel LDA - Gathered from New York Times website

NLP topic mdel LDA - Gathered from New York Times website

1 Oct 14, 2021
Backend for the Autocomplete platform. An AI assisted coding platform.

Introduction A custom predictor allows you to deploy your own prediction implementation, useful when the existing serving implementations don't fit yo

Tatenda Christopher Chinyamakobvu 1 Jan 31, 2022
Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors"

SWRM Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors" Clone Clone th

14 Jan 03, 2023
A paper list for aspect based sentiment analysis.

Aspect-Based-Sentiment-Analysis A paper list for aspect based sentiment analysis. Survey [IEEE-TAC-20]: Issues and Challenges of Aspect-based Sentimen

jiangqn 419 Dec 20, 2022
NLP codes implemented with Pytorch (w/o library such as huggingface)

NLP_scratch NLP codes implemented with Pytorch (w/o library such as huggingface) scripts ├── models: Neural Network models ├── data: codes for dataloa

3 Dec 28, 2021
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
This project deals with a simplified version of a more general problem of Aspect Based Sentiment Analysis.

Aspect_Based_Sentiment_Extraction Created on: 5th Jan, 2022. This project deals with an important field of Natural Lnaguage Processing - Aspect Based

Naman Rastogi 4 Jan 01, 2023
Unsupervised Language Modeling at scale for robust sentiment classification

** DEPRECATED ** This repo has been deprecated. Please visit Megatron-LM for our up to date Large-scale unsupervised pretraining and finetuning code.

NVIDIA Corporation 1k Nov 17, 2022
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Udit Arora 19 Oct 28, 2022