History Aware Multimodal Transformer for Vision-and-Language Navigation

Overview

History Aware Multimodal Transformer for Vision-and-Language Navigation

This repository is the official implementation of History Aware Multimodal Transformer for Vision-and-Language Navigation. Project webpage: https://cshizhe.github.io/projects/vln_hamt.html

Vision-and-language navigation (VLN) aims to build autonomous visual agents that follow instructions and navigate in real scenes. In this work, we introduce a History Aware Multimodal Transformer (HAMT) to incorporate a long-horizon history into multimodal decision making. HAMT efficiently encodes all the past panoramic observations via a hierarchical vision transformer. It, then, jointly combines text, history and current observation to predict the next action. We first train HAMT end-to-end using several proxy tasks including single-step action prediction and spatial relation prediction, and then use reinforcement learning to further improve the navigation policy. HAMT achieves new state of the art on a broad range of VLN tasks, including VLN with fine-grained instructions (R2R, RxR) high-level instructions (R2R-Last, REVERIE), dialogs (CVDN) as well as long-horizon VLN (R4R, R2R-Back).

framework

Installation

  1. Install Matterport3D simulators: follow instructions here. We use the latest version (all inputs and outputs are batched).
export PYTHONPATH=Matterport3DSimulator/build:$PYTHONPATH
  1. Install requirements:
conda create --name vlnhamt python=3.8.5
conda activate vlnhamt
pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
pip install -r requirements.txt
  1. Download data from Dropbox, including processed annotations, features and pretrained models. Put the data in `datasets' directory.

  2. (Optional) If you want to train HAMT end-to-end, you should download original Matterport3D data.

Extracting features (optional)

Scripts to extract visual features are in preprocess directory:

CUDA_VISIBLE_DEVICES=0 python preprocess/precompute_img_features_vit.py \
    --model_name vit_base_patch16_224 --out_image_logits \
    --connectivity_dir datasets/R2R/connectivity \
    --scan_dir datasets/Matterport3D/v1_unzip_scans \
    --num_workers 4 \
    --output_file datasets/R2R/features/pth_vit_base_patch16_224_imagenet.hdf5

Training with proxy tasks

Stage 1: Pretrain with fixed ViT features

NODE_RANK=0
NUM_GPUS=4
CUDA_VISIBLE_DEVICES='0,1,2,3' python -m torch.distributed.launch \
    --nproc_per_node=${NUM_GPUS} --node_rank $NODE_RANK \
    pretrain_src/main_r2r.py --world_size ${NUM_GPUS} \
    --model_config pretrain_src/config/r2r_model_config.json \
    --config pretrain_src/config/pretrain_r2r.json \
    --output_dir datasets/R2R/exprs/pretrain/cmt-vitbase-6tasks

Stage 2: Train ViT in an end-to-end manner

Change the config file as `pretrain_r2r_e2e.json'.

Fine-tuning for sequential action prediction

cd finetune_src
bash scripts/run_r2r.bash
bash scripts/run_r2r_back.bash
bash scripts/run_r2r_last.bash
bash scripts/run_r4r.bash
bash scripts/run_reverie.bash
bash scripts/run_cvdn.bash

Citation

If you find this work useful, please consider citing:

@InProceedings{chen2021hamt,
author       = {Chen, Shizhe and Guhur, Pierre-Louis and Schmid, Cordelia and Laptev, Ivan},
title        = {History Aware multimodal Transformer for Vision-and-Language Navigation},
booktitle    = {NeurIPS},
year         = {2021},
}

Acknowledgement

Some of the codes are built upon pytorch-image-models, UNITER and Recurrent-VLN-BERT. Thanks them for their great works!

Owner
Shizhe Chen
Shizhe Chen
초성 해석기 based on ko-BART

초성 해석기 개요 한국어 초성만으로 이루어진 문장을 입력하면, 완성된 문장을 예측하는 초성 해석기입니다. 초성: ㄴㄴ ㄴㄹ ㅈㅇㅎ 예측 문장: 나는 너를 좋아해 모델 모델은 SKT-AI에서 공개한 Ko-BART를 이용합니다. 데이터 문장 단위로 이루어진 아무 코퍼스나

Dawoon Jung 29 Oct 28, 2022
ADCS - Automatic Defect Classification System (ADCS) for SSMC

Table of Contents Table of Contents ADCS Overview Summary Operator's Guide Demo System Design System Logic Training Mode Production System Flow Folder

Tam Zher Min 2 Jun 24, 2022
Treemap visualisation of Maya scene files

Ever wondered which nodes are responsible for that 600 mb+ Maya scene file? Features Fast, resizable UI Parsing at 50 mb/sec Dependency-free, single-f

Marcus Ottosson 76 Nov 12, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

HNLP 1.1k Dec 16, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 464 Jan 04, 2023
Trained T5 and T5-large model for creating keywords from text

text to keywords Trained T5-base and T5-large model for creating keywords from text. Supported languages: ru Pretraining Large version | Pretraining B

Danil 61 Nov 24, 2022
REST API for sentence tokenization and embedding using Multilingual Universal Sentence Encoder.

What is MUSE? MUSE stands for Multilingual Universal Sentence Encoder - multilingual extension (16 languages) of Universal Sentence Encoder (USE). MUS

Dani El-Ayyass 47 Sep 05, 2022
NLP-based analysis of poor Chinese movie reviews on Douban

douban_embedding 豆瓣中文影评差评分析 1. NLP NLP(Natural Language Processing)是指自然语言处理,他的目的是让计算机可以听懂人话。 下面是我将2万条豆瓣影评训练之后,随意输入一段新影评交给神经网络,最终AI推断出的结果。 "很好,演技不错

3 Apr 15, 2022
AudioCLIP Extending CLIP to Image, Text and Audio

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
This is the source code of RPG (Reward-Randomized Policy Gradient)

RPG (Reward-Randomized Policy Gradient) Zhenggang Tang*, Chao Yu*, Boyuan Chen, Huazhe Xu, Xiaolong Wang, Fei Fang, Simon Shaolei Du, Yu Wang, Yi Wu (

40 Nov 25, 2022
Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Ubiquitous Knowledge Processing Lab 748 Jan 06, 2023
A Plover python dictionary allowing for consistent symbol input with specification of attachment and capitalisation in one stroke.

Emily's Symbol Dictionary Design This dictionary was created with the following goals in mind: Have a consistent method to type (pretty much) every sy

Emily 68 Jan 07, 2023
Russian GPT3 models.

Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Larg

Sberbank AI 1.6k Jan 05, 2023
Code for the paper "Language Models are Unsupervised Multitask Learners"

Status: Archive (code is provided as-is, no updates expected) gpt-2 Code and models from the paper "Language Models are Unsupervised Multitask Learner

OpenAI 16.1k Jan 08, 2023
Every Google, Azure & IBM text to speech voice for free

TTS-Grabber Quick thing i made about a year ago to download any text with any tts voice, over 630 voices to choose from currently. It will split the i

16 Dec 07, 2022
天池中药说明书实体识别挑战冠军方案;中文命名实体识别;NER; BERT-CRF & BERT-SPAN & BERT-MRC;Pytorch

天池中药说明书实体识别挑战冠军方案;中文命名实体识别;NER; BERT-CRF & BERT-SPAN & BERT-MRC;Pytorch

zxx飞翔的鱼 751 Dec 30, 2022
NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking

pretrain4ir_tutorial NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking 用作NLPIR实验室, Pre-training

ZYMa 12 Apr 07, 2022
The Sudachi synonym dictionary in Solar format.

solr-sudachi-synonyms The Sudachi synonym dictionary in Solar format. Summary Run a script that checks for updates to the Sudachi dictionary every hou

Karibash 3 Aug 19, 2022
Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Ubiquitous Knowledge Processing Lab 59 Dec 01, 2022
An attempt to map the areas with active conflict in Ukraine using open source twitter data.

Live Action Map (LAM) An attempt to use open source data on Twitter to map areas with active conflict. Right now it is used for the Ukraine-Russia con

Kinshuk Dua 171 Nov 21, 2022