This project deals with a simplified version of a more general problem of Aspect Based Sentiment Analysis.

Overview

Aspect_Based_Sentiment_Extraction

Created on: 5th Jan, 2022.

This project deals with an important field of Natural Lnaguage Processing - Aspect Based Sentiment Analysis (ABSA). But the problem statement here is rather a simplified version of the more general ABSA.
Aspect-Based Sentiment analysis is a type of text analysis that categorizes opinions by aspect and identifies the sentiment related to each aspect. Aspects are important words that are of importance to a business or organization, where they want to be able to provide their customers with insights on how their customers feel about these important words.
The general ABSA problem, which is an active area of machine learning research, is about finding all the possible aspects and the corresponding sentiments associated with those aspects in a given text or a document. For example, given a sentence like “I like apples very much, but I hate kiwi”, an ideal absa system should be able to identify aspects like apples and kiwi with correct sentiments of positive and negative respectively.
But here, in the problem statement that this project deals with, an aspect word/phrase is already given from the given text, which means that our problem is rather simplified and we don’t need to worry about the complex task of identifying aspects as well in the text, at least for this problem statement that I am dealing with. In future, I will be working with the more general version of this problem, where aspects are also needed to be indentified.


A brief description of approach

This article explores the use of a pre-trained language model, BERT (Bidirectional Encoder Representaton from Transformers), for the purpose of solving the aforementioned problem. BERT offers very robust contextual embeddings which are useful to solve the variety of problems. Therefore, the sole idea here is to explore the modelling capabilities of the BERT embeddings, by making use of the sentence pair input for the aspect sentiment prediction task. The model which I came up with was able to achieve 99.40% accuracy on the training data and 96.16% accuracy on the test data.

Instructions to run and test files

Clone this repository and navigate to the project folder:
git clone https://github.com/stardust-88/Aspect_Based_Sentiment_Extraction.git
cd Aspect_Based_sentiment_Extraction

To install the dependencies:
pip3 install -r requirements.txt

To train:
Navigate to the src folder and run the below command:
python train.py

For inference:
Navigate to the src folder and run the below command:
python inference.py

Instructions for using trained model weights

I have saved my trained weights to google drive and generated the link, which can be used to download the same. This can be done through below steps.

  1. Navigate to the the models directory.
  2. When inside the models directory, run the file download_model.py: python download_model.py

So, if the user wants to do the inference using pre-trained weights, first download the weights following above two steps, then then run the inference.py script.

Results from the model

  1. Accuracy curve:

  1. Loss curve:

  1. Classification report:

  1. Confusion matrix:

Owner
Naman Rastogi
An undergraduate in Computer Science and Engineering. Trying to discover fundamental patterns with machine learning.
Naman Rastogi
Azure Text-to-speech service for Home Assistant

Azure Text-to-speech service for Home Assistant The Azure text-to-speech platform uses online Azure Text-to-Speech cognitive service to read a text wi

Yassine Selmi 2 Aug 06, 2022
Top2Vec is an algorithm for topic modeling and semantic search.

Top2Vec is an algorithm for topic modeling and semantic search. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors.

Dimo Angelov 2.4k Jan 06, 2023
Sentence Embeddings with BERT & XLNet

Sentence Transformers: Multilingual Sentence Embeddings using BERT / RoBERTa / XLM-RoBERTa & Co. with PyTorch This framework provides an easy method t

Ubiquitous Knowledge Processing Lab 9.1k Jan 02, 2023
hashily is a Python module that provides a variety of text decoding and encoding operations.

hashily is a python module that performs a variety of text decoding and encoding functions. It also various functions for encrypting and decrypting text using various ciphers.

DevMysT 5 Jul 17, 2022
Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021.

capbot-siic Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021. Problem Inspiration A plethora

Aryan Kargwal 19 Feb 17, 2022
test

Lidar-data-decode In this project, you can decode your lidar data frame(pcap file) and make your own datasets(test dataset) in Windows without any hug

46 Dec 05, 2022
Simple GUI where you can enter an article and get a crisp summarized version.

Text-Summarization-using-TextRank-BART Simple GUI where you can enter an article and get a crisp summarized version. How to run: Clone the repo Instal

Rohit P 4 Sep 28, 2022
Named Entity Recognition API used by TEI Publisher

TEI Publisher Named Entity Recognition API This repository contains the API used by TEI Publisher's web-annotation editor to detect entities in the in

e-editiones.org 14 Nov 15, 2022
BERT score for text generation

BERTScore Automatic Evaluation Metric described in the paper BERTScore: Evaluating Text Generation with BERT (ICLR 2020). News: Features to appear in

Tianyi 1k Jan 08, 2023
MEDIALpy: MEDIcal Abbreviations Lookup in Python

A small python package that allows the user to look up common medical abbreviations.

Aberystwyth Systems Biology 7 Nov 09, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
Word Bot for JKLM Bomb Party

Word Bot for JKLM Bomb Party A bot for Bomb Party on https://www.jklm.fun (Only English) Requirements pynput pyperclip pyautogui Usage: Step 1: Run th

Nicolas 7 Oct 30, 2022
Use the state-of-the-art m2m100 to translate large data on CPU/GPU/TPU. Super Easy!

Easy-Translate is a script for translating large text files in your machine using the M2M100 models from Facebook/Meta AI. We also privide a script fo

Iker García-Ferrero 41 Dec 15, 2022
A Lightweight NLP Data Loader for All Deep Learning Frameworks in Python

LineFlow: Framework-Agnostic NLP Data Loader in Python LineFlow is a simple text dataset loader for NLP deep learning tasks. LineFlow was designed to

TofuNLP 177 Jan 04, 2023
A full spaCy pipeline and models for scientific/biomedical documents.

This repository contains custom pipes and models related to using spaCy for scientific documents. In particular, there is a custom tokenizer that adds

AI2 1.3k Jan 03, 2023
Concept Modeling: Topic Modeling on Images and Text

Concept is a technique that leverages CLIP and BERTopic-based techniques to perform Concept Modeling on images.

Maarten Grootendorst 120 Dec 27, 2022
Translate U is capable of translating the text present in an image from one language to the other.

Translate U is capable of translating the text present in an image from one language to the other. The app uses OCR and Google translate to identify and translate across 80+ languages.

Neelanjan Manna 1 Dec 22, 2021
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Amazon Web Services - Labs 1.1k Dec 27, 2022
Subtitle Workshop (subshop): tools to download and synchronize subtitles

SUBSHOP Tools to download, remove ads, and synchronize subtitles. SUBSHOP Purpose Limitations Required Web Credentials Installation, Configuration, an

Joe D 4 Feb 13, 2022
PyTorch implementation of the paper: Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding

Text is no more Enough! A Benchmark for Profile-based Spoken Language Understanding This repository contains the official PyTorch implementation of th

Xiao Xu 26 Dec 14, 2022