This project deals with a simplified version of a more general problem of Aspect Based Sentiment Analysis.

Overview

Aspect_Based_Sentiment_Extraction

Created on: 5th Jan, 2022.

This project deals with an important field of Natural Lnaguage Processing - Aspect Based Sentiment Analysis (ABSA). But the problem statement here is rather a simplified version of the more general ABSA.
Aspect-Based Sentiment analysis is a type of text analysis that categorizes opinions by aspect and identifies the sentiment related to each aspect. Aspects are important words that are of importance to a business or organization, where they want to be able to provide their customers with insights on how their customers feel about these important words.
The general ABSA problem, which is an active area of machine learning research, is about finding all the possible aspects and the corresponding sentiments associated with those aspects in a given text or a document. For example, given a sentence like “I like apples very much, but I hate kiwi”, an ideal absa system should be able to identify aspects like apples and kiwi with correct sentiments of positive and negative respectively.
But here, in the problem statement that this project deals with, an aspect word/phrase is already given from the given text, which means that our problem is rather simplified and we don’t need to worry about the complex task of identifying aspects as well in the text, at least for this problem statement that I am dealing with. In future, I will be working with the more general version of this problem, where aspects are also needed to be indentified.


A brief description of approach

This article explores the use of a pre-trained language model, BERT (Bidirectional Encoder Representaton from Transformers), for the purpose of solving the aforementioned problem. BERT offers very robust contextual embeddings which are useful to solve the variety of problems. Therefore, the sole idea here is to explore the modelling capabilities of the BERT embeddings, by making use of the sentence pair input for the aspect sentiment prediction task. The model which I came up with was able to achieve 99.40% accuracy on the training data and 96.16% accuracy on the test data.

Instructions to run and test files

Clone this repository and navigate to the project folder:
git clone https://github.com/stardust-88/Aspect_Based_Sentiment_Extraction.git
cd Aspect_Based_sentiment_Extraction

To install the dependencies:
pip3 install -r requirements.txt

To train:
Navigate to the src folder and run the below command:
python train.py

For inference:
Navigate to the src folder and run the below command:
python inference.py

Instructions for using trained model weights

I have saved my trained weights to google drive and generated the link, which can be used to download the same. This can be done through below steps.

  1. Navigate to the the models directory.
  2. When inside the models directory, run the file download_model.py: python download_model.py

So, if the user wants to do the inference using pre-trained weights, first download the weights following above two steps, then then run the inference.py script.

Results from the model

  1. Accuracy curve:

  1. Loss curve:

  1. Classification report:

  1. Confusion matrix:

Owner
Naman Rastogi
An undergraduate in Computer Science and Engineering. Trying to discover fundamental patterns with machine learning.
Naman Rastogi
Search Git commits in natural language

NaLCoS - NAtural Language COmmit Search Search commit messages in your repository in natural language. NaLCoS (NAtural Language COmmit Search) is a co

Pushkar Patel 50 Mar 22, 2022
Snowball compiler and stemming algorithms

Snowball is a small string processing language for creating stemming algorithms for use in Information Retrieval, plus a collection of stemming algori

Snowball Stemming language and algorithms 613 Jan 07, 2023
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
Fully featured implementation of Routing Transformer

Routing Transformer A fully featured implementation of Routing Transformer. The paper proposes using k-means to route similar queries / keys into the

Phil Wang 246 Jan 02, 2023
A NLP program: tokenize method, PoS Tagging with deep learning

IRIS NLP SYSTEM A NLP program: tokenize method, PoS Tagging with deep learning Report Bug · Request Feature Table of Contents About The Project Built

Zakaria 7 Dec 13, 2022
GooAQ 🥑 : Google Answers to Google Questions!

This repository contains the code/data accompanying our recent work on long-form question answering.

AI2 112 Nov 06, 2022
Training code of Spatial Time Memory Network. Semi-supervised video object segmentation.

Training-code-of-STM This repository fully reproduces Space-Time Memory Networks Performance on Davis17 val set&Weights backbone training stage traini

haochen wang 128 Dec 11, 2022
Tensorflow implementation of paper: Learning to Diagnose with LSTM Recurrent Neural Networks.

Multilabel time series classification with LSTM Tensorflow implementation of model discussed in the following paper: Learning to Diagnose with LSTM Re

Aaqib 552 Nov 28, 2022
A large-scale (194k), Multiple-Choice Question Answering (MCQA) dataset designed to address realworld medical entrance exam questions.

MedMCQA MedMCQA : A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering A large-scale, Multiple-Choice Question Answe

MedMCQA 24 Nov 30, 2022
Persian-lexicon - A lexicon of 70K unique Persian (Farsi) words

Persian Lexicon This repo uses Uppsala Persian Corpus (UPC) to construct a lexic

Saman Vaisipour 7 Apr 01, 2022
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
A multi-lingual approach to AllenNLP CoReference Resolution along with a wrapper for spaCy.

Crosslingual Coreference Coreference is amazing but the data required for training a model is very scarce. In our case, the available training for non

Pandora Intelligence 71 Jan 04, 2023
Quantifiers and Negations in RE Documents

Quantifiers-and-Negations-in-RE-Documents This project was part of my work for a

Nicolas Ruscher 1 Feb 01, 2022
Source code for CsiNet and CRNet using Fully Connected Layer-Shared feedback architecture.

FCS-applications Source code for CsiNet and CRNet using the Fully Connected Layer-Shared feedback architecture. Introduction This repository contains

Boyuan Zhang 4 Oct 07, 2022
NLP codes implemented with Pytorch (w/o library such as huggingface)

NLP_scratch NLP codes implemented with Pytorch (w/o library such as huggingface) scripts ├── models: Neural Network models ├── data: codes for dataloa

3 Dec 28, 2021
A workshop with several modules to help learn Feast, an open-source feature store

Workshop: Learning Feast This workshop aims to teach users about Feast, an open-source feature store. We explain concepts & best practices by example,

Feast 52 Jan 05, 2023
Finally, some decent sample sentences

tts-dataset-prompts This repository aims to be a decent set of sentences for people looking to clone their own voices (e.g. using Tacotron 2). Each se

hecko 19 Dec 13, 2022
Code for ACL 2020 paper "Rigid Formats Controlled Text Generation"

SongNet SongNet: SongCi + Song (Lyrics) + Sonnet + etc. @inproceedings{li-etal-2020-rigid, title = "Rigid Formats Controlled Text Generation",

Piji Li 212 Dec 17, 2022
Extracting Summary Knowledge Graphs from Long Documents

GraphSum This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other basel

Zeqiu (Ellen) Wu 10 Oct 21, 2022
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 68 Jan 06, 2023