Maha is a text processing library specially developed to deal with Arabic text.

Overview



CI Documentation Status codecov Discord Downloads License PyPI version Code style: black Checked with mypy PyPI - Python Version

An Arabic text processing library intended for use in NLP applications


Maha is a text processing library specially developed to deal with Arabic text. The beta version can be used to clean and parse text, files, and folders with or without streaming capability.

If you need help or want to discuss topics related to Maha, feel free to reach out to our Discord server. If you would like to submit a bug report or feature request, please open an issue.

Installation

Simply run the following to install Maha:

pip install mahad # pronounced maha d

For source installation, check the documentation.

Overview

Check out the overview section in the documentation to get started with Maha.

Documentation

Documentation are hosted at ReadTheDocs.

Contributing

Maha welcomes and encourages everyone to contribute. Contributions are always appreciated. Feel free to take a look at our contribution guidelines in the documentation.

License

Maha is BSD-licensed.

Comments
  • Time: Add the ability to parse Hijri dates

    Time: Add the ability to parse Hijri dates

    What does this pull request change?

    Closes #27.

    Status (please check what you already did):

    • [x] added some tests for the functionality
    • [ ] updated the documentation
    • [x] tox passes
    new feature highlight 
    opened by TRoboto 6
  • Added distance to dimension parsing

    Added distance to dimension parsing

    What does this pull request change?

    Resolves #15.

    Status (please check what you already did):

    • [x] added some tests for the functionality
    • [x] updated the documentation
    • [x] tox passes
    parsing highlight 
    opened by TRoboto 5
  • Introduce :mod:`~.datasets` module and the first dataset, `names`, with over 40,000 unique names

    Introduce :mod:`~.datasets` module and the first dataset, `names`, with over 40,000 unique names

    What does this pull request change?

    This PR introduces a new datasets module that offers an interface for all upcoming datasets. A new dataset, names, is released along with the module. It comprises 44,161 unique names with descriptions and name origin included for most names.

    Link to updated docs: https://maha--40.org.readthedocs.build/en/40/overview.html#datasets

    Status (please check what you already did):

    • [x] added some tests for the functionality
    • [x] updated the documentation
    • [x] tox passes
    new feature highlight 
    opened by TRoboto 4
  • Add pyupgrade to pre-commit and upgrade to future-style type annotations

    Add pyupgrade to pre-commit and upgrade to future-style type annotations

    What does this pull request change?

    Upgrades to new type annotations style.

    Status (please check what you already did):

    • [ ] added some tests for the functionality
    • [ ] updated the documentation
    • [x] tox passes
    maintenance 
    opened by TRoboto 3
  • Deprecate and remove `datasets` module and host datasets on Hugging Face instead

    Deprecate and remove `datasets` module and host datasets on Hugging Face instead

    What does this pull request change?

    • Removes datasets module.
    • Datasets are now hosted here

    Status (please check what you already did):

    • [ ] added some tests for the functionality
    • [ ] updated the documentation
    • [x] tox passes
    breaking changes deprecation 
    opened by TRoboto 3
  • Add the ability to parse names from text

    Add the ability to parse names from text

    What does this pull request change?

    Adds #24. Depends on #40

    Status (please check what you already did):

    • [x] added some tests for the functionality
    • [x] updated the documentation
    • [x] tox passes
    new feature highlight 
    opened by TRoboto 3
  • Add a deprecation system

    Add a deprecation system

    What does this pull request change?

    • Closes #23
    • Adds 3 deprecation decorators; for functions, for parameters, for default parameters.

    Status (please check what you already did):

    • [x] added some tests for the functionality
    • [ ] updated the documentation
    • [x] tox passes
    development 
    opened by saedx1 3
  • Prepare for the next release of Maha (v0.3.0)

    Prepare for the next release of Maha (v0.3.0)

    This is an auto-generated PR to prepare for the next release of Maha. The following changes were automatically made:

    • Generated changelogs for release v0.3.0.
    • Bumped pypi version to v0.3.0.
    • Updated the citation information.
    opened by github-actions[bot] 2
  • Ordinal: Add support to `بعد` in ordinal parsing

    Ordinal: Add support to `بعد` in ordinal parsing

    What does this pull request change?

    Closes #48.

    Status (please check what you already did):

    • [x] added some tests for the functionality
    • [ ] updated the documentation
    • [x] tox passes
    new feature 
    opened by TRoboto 2
  • Numeral: Add support for hierarchical parsing

    Numeral: Add support for hierarchical parsing

    What does this pull request change?

    Closes #25

    Status (please check what you already did):

    • [x] added some tests for the functionality
    • [ ] updated the documentation
    • [x] tox passes
    new feature 
    opened by TRoboto 2
  • Prepare for the next release of Maha (v0.2.0)

    Prepare for the next release of Maha (v0.2.0)

    This is an auto-generated PR to prepare for the next release of Maha. The following changes were automatically made:

    • Generated changelogs for release v0.2.0.
    • Bumped pypi version to v0.2.0.
    • Updated the citation information.
    opened by github-actions[bot] 2
  • Update ci.yml

    Update ci.yml

    Check the support for python 3,10

    What does this pull request change? It checks if the library is supporting python 3.10.

    • ...

    Status (please check what you already did):

    • [ ] added some tests for the functionality
    • [ ] updated the documentation
    • [ ] tox passes
    opened by PAIN-BARHAM 1
  • Add the option to ignore Harakat when removing or replacing

    Add the option to ignore Harakat when removing or replacing

    What problem are you trying to solve?

    Currently, the cleaner functions do not consider two strings similar if they have different Harakat/diacritics, which is the correct behavior. However, it would be great if the user had the option to ignore Harakat when comparing strings.

    Examples (if relevant)

    Current:

    >> from maha.cleaners.functions import remove
    >> output = remove("يُدَرِّسُ اللُّغَةَ العَرَبِيَّةَ الفُصْحَى", custom_expressions=r"اللغة")
    >> output
    يُدَرِّسُ اللُّغَةَ العَرَبِيَّةَ الفُصْحَى
    

    Suggested:

    >> from maha.cleaners.functions import remove
    >> remove("يُدَرِّسُ اللُّغَةَ العَرَبِيَّةَ الفُصْحَى", custom_expressions=r"اللغة", ignore_harakat=True)
    >> output
    يُدَرِّسُ العَرَبِيَّةَ الفُصْحَى
    

    Definition of Done

    • It must adhere to the coding style used in the defined cleaner functions.
    • The implementation should cover most use cases.
    • Adding tests
    feature request 
    opened by xaleel 1
  • Wrong parsed name using name dimension

    Wrong parsed name using name dimension

    What happened?

    The name parser extracted wrong name likes : بي, شكرا.

    Example: text: أريد البحث في سجل الإنفاق الخاص بي [Dimension(body=بي, value=بي, start=32, end=34, dimension_type=DimensionType.NAME)]

    I expect to extract the names on the name dataset only.

    Python version

    3.8

    What operating system are you using?

    Linux

    Code to reproduce the issue

    >>> from maha.parsers.functions import parse_dimension
    >>> text = `أريد البحث في سجل الإنفاق الخاص بي`
    >>> extracted = parse_dimension(text, names=True)
    [Dimension(body=بي, value=بي, start=32, end=34, dimension_type=DimensionType.NAME)]
    

    Relevant log output

    No response

    bug parsing 
    opened by PAIN-BARHAM 0
  • Add feature to parse duration period

    Add feature to parse duration period

    What problem are you trying to solve?

    Parsing the duration from the text that has the difference between the two dates.

    Examples (if relevant)

    >>> from maha.parsers.functions import parse_dimension
    >>> output = parse_dimension('عن ربع نمو سكان العالم القديم والتحضر بين 1700 و 1900 ميلادي', duration=True)[0].value
    >>> output
    DurationValue(values=[ValueUnit(value=200, unit=<DurationUnit.YEARS: 7>)], normalized_unit=<DurationUnit.SECONDS: 1>)
    
    

    Definition of Done

    • It must adhere to the coding style used in the defined dimensions, duration dimension.
    • The implementation should cover most use cases.
    • Adding tests
    feature request 
    opened by PAIN-BARHAM 1
  • Adding the parser functionality to Processors

    Adding the parser functionality to Processors

    What problem are you trying to solve?

    Adding the parser functionality to Processors to parse different dimensions.

    Examples (if relevant)

    >>> from pathlib import Path
    >>> import maha
    >>> resource_path = Path(maha.__file__).parents[1] / "sample_data/tweets.txt"
    >>> data = resource_path.read_text()
    >>> print(data)
    
    الساعة الآن 12:00 في اسبانيا 🇪🇸, انتهى بشكل رسمي عقد الأسطورة ليو ميسي مع برشلونة . .
    طبعا بكونو حاطين المكيف ع٣ مئوية وخود تقلبات وبرد وحر وCNS وزعيق المراقب وألف نيلة وقر فتحت اشوف درجة الحرارة هتبقي كام يو الامتحان لقيتها ٤٢ والامتحان الساعه ١ فعايز انورماليز اننا ننزل بالفالنه الحمالات Hot fac
    يسعدلي مساكم ❤🌹 شرح كلمة zwa هالمنشور رح تلاقو (zwar) سهل و لذيذ (aber) ناقصو شوية ملح وكزبر #منقو
    مـعلش استحملوني ب الاصفر هالفتره 💛 #ريشـه هههههههه
    لما حد يسالني بتختفي كتير لية =..
    زيِّنوا ليلة الجمع بالصلاة على النَّبِيِّ ﷺ" ❤
    #Windows11 is on the horizon. What feature are you looking forward to
    Get vaccinate #savethesaviour
    Today I am beginning project on 10 days duratio #30daysofcod #DEVCommunit
    
    >>> from maha.processors import FileProcessor
    >>> proc = FileProcessor(resource_path)
    >>> parsed = proc.parse_dimension(time=True)
    [Dimension(body=الساعة الآن 12:00, value=TimeValue(years=0, months=0, days=0, hours=0, minutes=0, seconds=0, hour=12, minute=0, second=0, microsecond=0), start=0, end=17, dimension_type=DimensionType.TIME),
     Dimension(body=الساعه ١, value=TimeValue(hour=1, minute=0, second=0, microsecond=0), start=238, end=246, dimension_type=DimensionType.TIME),
     Dimension(body=ليلة, value=TimeValue(am_pm='PM'), start=491, end=495, dimension_type=DimensionType.TIME)]
    
    

    Definition of Done

    • It must adhere to the coding style.
    • The implementation should cover most use cases.
    • Adding tests.
    good first issue feature request parsing 
    opened by PAIN-BARHAM 0
Releases(v0.3.0)
Owner
Mohammad Al-Fetyani
Machine Learning Engineer
Mohammad Al-Fetyani
Repository for Graph2Pix: A Graph-Based Image to Image Translation Framework

Graph2Pix: A Graph-Based Image to Image Translation Framework Installation Install the dependencies in env.yml $ conda env create -f env.yml $ conda a

18 Nov 17, 2022
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

9 Jan 08, 2023
Interpretable Models for NLP using PyTorch

This repo is deprecated. Please find the updated package here. https://github.com/EdGENetworks/anuvada Anuvada: Interpretable Models for NLP using PyT

Sandeep Tammu 19 Dec 17, 2022
Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 models for speech recognition

Wav2Vec2 STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using wav2vec 2.0 mode

David Zurow 22 Dec 29, 2022
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

AttentiveNAS: Improving Neural Architecture Search via Attentive Sampling This repository contains PyTorch evaluation code, training code and pretrain

Facebook Research 94 Oct 26, 2022
AIDynamicTextReader - A simple dynamic text reader based on Artificial intelligence

AI Dynamic Text Reader: This is a simple dynamic text reader based on Artificial

Md. Rakibul Islam 1 Jan 18, 2022
Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow.

Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow. Documentation Proper documentation is available at

HUSEIN ZOLKEPLI 151 Jan 05, 2023
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Meta Research 6.4k Jan 08, 2023
Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

0 Feb 13, 2022
txtai: Build AI-powered semantic search applications in Go

txtai: Build AI-powered semantic search applications in Go txtai executes machine-learning workflows to transform data and build AI-powered semantic s

NeuML 49 Dec 06, 2022
Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together

SpeechMix Explore different way to mix speech model(wav2vec2, hubert) and nlp model(BART,T5,GPT) together. Introduction For the same input: from datas

Eric Lam 31 Nov 07, 2022
A Plover python dictionary allowing for consistent symbol input with specification of attachment and capitalisation in one stroke.

Emily's Symbol Dictionary Design This dictionary was created with the following goals in mind: Have a consistent method to type (pretty much) every sy

Emily 68 Jan 07, 2023
LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language

LegalNLP - Natural Language Processing Methods for the Brazilian Legal Language ⚖️ The library of Natural Language Processing for Brazilian legal lang

Felipe Maia Polo 125 Dec 20, 2022
Using context-free grammar formalism to parse English sentences to determine their structure to help computer to better understand the meaning of the sentence.

Sentance Parser Executing the Program Make sure Python 3.6+ is installed. Install requirements $ pip install requirements.txt Run the program:

Vaibhaw 12 Sep 28, 2022
The tool to make NLP datasets ready to use

chazutsu photo from Kaikado, traditional Japanese chazutsu maker chazutsu is the dataset downloader for NLP. import chazutsu r = chazutsu.data

chakki 243 Dec 29, 2022
DeepPavlov Tutorials

DeepPavlov tutorials DeepPavlov: Sentence Classification with Word Embeddings DeepPavlov: Transfer Learning with BERT. Classification, Tagging, QA, Ze

Neural Networks and Deep Learning lab, MIPT 28 Sep 13, 2022
Client library to download and publish models and other files on the huggingface.co hub

huggingface_hub Client library to download and publish models and other files on the huggingface.co hub Do you have an open source ML library? We're l

Hugging Face 644 Jan 01, 2023
Spacy-ginza-ner-webapi - Named Entity Recognition API with spaCy and GiNZA

Named Entity Recognition API with spaCy and GiNZA I wrote a blog post about this

Yuki Okuda 3 Feb 27, 2022
A fast and lightweight python-based CTC beam search decoder for speech recognition.

pyctcdecode A fast and feature-rich CTC beam search decoder for speech recognition written in Python, providing n-gram (kenlm) language model support

Kensho 315 Dec 21, 2022
Textpipe: clean and extract metadata from text

textpipe: clean and extract metadata from text textpipe is a Python package for converting raw text in to clean, readable text and extracting metadata

Textpipe 298 Nov 21, 2022