Open-World Entity Segmentation

Related tags

Text Data & NLPEntity
Overview

Open-World Entity Segmentation Project Website

Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia


This project provides an implementation for the paper "Open-World Entity Segmentation" based on Detectron2. Entity Segmentation is a segmentation task with the aim to segment everything in an image into semantically-meaningful regions without considering any category labels. Our entity segmentation models can perform exceptionally well in a cross-dataset setting where we use only COCO as the training dataset but we test the model on images from other datasets at inference time. Please refer to project website for more details and visualizations.


Installation

This project is based on Detectron2, which can be constructed as follows.

  • Install Detectron2 following the instructions. We are noting that our code is implemented in detectron2 commit version 28174e932c534f841195f02184dc67b941c65a67 and pytorch 1.8.
  • Setup the coco dataset including instance and panoptic annotations following the structure. The code of entity evaluation metric is saved in the file of modified_cocoapi. You can directly replace your compiled coco.py with modified_cocoapi/PythonAPI/pycocotools/coco.py.
  • Copy this project to /path/to/detectron2/projects/EntitySeg
  • Set the "find_unused_parameters=True" in distributed training of your own detectron2. You could modify it in detectron2/engine/defaults.py.

Data pre-processing

(1) Generate the entity information of each image by the instance and panoptic annotation. Please change the path of coco annotation files in the following code.

cd /path/to/detectron2/projects/EntitySeg/make_data
bash make_entity_mask.sh

(2) Change the generated entity information to the json files.

cd /path/to/detectron2/projects/EntitySeg/make_data
python3 entity_to_json.py

Training

To train model with 8 GPUs, run:

cd /path/to/detectron2
python3 projects/EntitySeg/train_net.py --config-file <projects/EntitySeg/configs/config.yaml> --num-gpus 8

For example, to launch entity segmentation training (1x schedule) with ResNet-50 backbone on 8 GPUs and save the model in the path "/data/entity_model". one should execute:

cd /path/to/detectron2
python3 projects/EntitySeg/train_net.py --config-file projects/EntitySeg/configs/entity_default.yaml --num-gpus 8 OUTPUT_DIR /data/entity_model

Evaluation

To evaluate a pre-trained model with 8 GPUs, run:

cd /path/to/detectron2
python3 projects/EntitySeg/train_net.py --config-file <config.yaml> --num-gpus 8 --eval-only MODEL.WEIGHTS model_checkpoint

Visualization

To visualize some image result of a pre-trained model, run:

cd /path/to/detectron2
python3 projects/EntitySeg/demo_result_and_vis.py --config-file <config.yaml> --input <input_path> --output <output_path> MODEL.WEIGHTS model_checkpoint MODEL.CONDINST.MASK_BRANCH.USE_MASK_RESCORE "True"

For example,

python3 projects/EntitySeg/demo_result_and_vis.py --config-file projects/EntitySeg/configs/entity_swin_lw7_1x.yaml --input /data/input/*.jpg --output /data/output MODEL.WEIGHTS /data/pretrained_model/R_50.pth MODEL.CONDINST.MASK_BRANCH.USE_MASK_RESCORE "True"

Pretrained weights of Swin Transformers

Use the tools/convert_swin_to_d2.py to convert the pretrained weights of Swin Transformers to the detectron2 format. For example,

pip install timm
wget https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth
python tools/convert_swin_to_d2.py swin_tiny_patch4_window7_224.pth swin_tiny_patch4_window7_224_trans.pth

Pretrained weights of Segformer Backbone

Use the tools/convert_mit_to_d2.py to convert the pretrained weights of SegFormer Backbone to the detectron2 format. For example,

pip install timm
python tools/convert_mit_to_d2.py mit_b0.pth mit_b0_trans.pth

Results

We provide the results of several pretrained models on COCO val set. It is easy to extend it to other backbones. We first describe the results of using CNN backbone.

Method Backbone Sched Entity AP download
Baseline R50 1x 28.3 model | metrics
Ours R50 1x 29.8 model | metrics
Ours R50 3x 31.8 model | metrics
Ours R101 1x 31.0 model | metrics
Ours R101 3x 33.2 model | metrics
Ours R101-DCNv2 3x 35.5 model | metrics

The results of using transformer backbone as follows.The Mask Rescore indicates that we use mask rescoring in inference by setting MODEL.CONDINST.MASK_BRANCH.USE_MASK_RESCORE to True.

Method Backbone Sched Entity AP Mask Rescore download
Ours Swin-T 1x 33.0 34.6 model | metrics
Ours Swin-L-W7 1x 37.8 39.3 model | metrics
Ours Swin-L-W7 3x 38.6 40.0 model | metrics
Ours Swin-L-W12 3x TBD TBD model | metrics
Ours MiT-b0 1x 28.8 30.4 model | metrics
Ours MiT-b2 1x 35.1 36.6 model | metrics
Ours MiT-b3 1x 36.9 38.5 model | metrics
Ours MiT-b5 1x 37.2 38.7 model | metrics
Ours MiT-b5 3x TBD TBD model | metrics

Citing Ours

Consider to cite Open-World Entity Segmentation if it helps your research.

@inprocedings{qi2021open,
  title={Open World Entity Segmentation},
  author={Lu Qi, Jason Kuen, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia},
  booktitle={arxiv},
  year={2021}
}
Owner
DV Lab
Deep Vision Lab
DV Lab
This repository structures data in title, summary, tags, sentiment given a fragment of a conversation

Understand-conversation-AI This repository structures data in title, summary, tags, sentiment given a fragment of a conversation How to install: pip i

Juan Camilo López Montes 1 Jan 11, 2022
Snips Python library to extract meaning from text

Snips NLU Snips NLU (Natural Language Understanding) is a Python library that allows to extract structured information from sentences written in natur

Snips 3.7k Dec 30, 2022
spaCy plugin for Transformers , Udify, ELmo, etc.

Camphr - spaCy plugin for Transformers, Udify, Elmo, etc. Camphr is a Natural Language Processing library that helps in seamless integration for a wid

342 Nov 21, 2022
🌸 fastText + Bloom embeddings for compact, full-coverage vectors with spaCy

floret: fastText + Bloom embeddings for compact, full-coverage vectors with spaCy floret is an extended version of fastText that can produce word repr

Explosion 222 Dec 16, 2022
TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech

TFPNER TFPNER: Exploration on the Named Entity Recognition of Token Fused with Part-of-Speech Named entity recognition (NER), which aims at identifyin

1 Feb 07, 2022
Two-stage text summarization with BERT and BART

Two-Stage Text Summarization Description We experiment with a 2-stage summarization model on CNN/DailyMail dataset that combines the ability to filter

Yukai Yang (Alexis) 6 Oct 22, 2022
Google and Stanford University released a new pre-trained model called ELECTRA

Google and Stanford University released a new pre-trained model called ELECTRA, which has a much compact model size and relatively competitive performance compared to BERT and its variants. For furth

Yiming Cui 1.2k Dec 30, 2022
A Multilingual Latent Dirichlet Allocation (LDA) Pipeline with Stop Words Removal, n-gram features, and Inverse Stemming, in Python.

Multilingual Latent Dirichlet Allocation (LDA) Pipeline This project is for text clustering using the Latent Dirichlet Allocation (LDA) algorithm. It

Artifici Online Services inc. 74 Oct 07, 2022
RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network trained to work with different pairs (images, texts).

RuCLIPtiny Zero-shot image classification model for Russian language RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network

Shahmatov Arseniy 26 Sep 20, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 884 Nov 11, 2022
Learning to Rewrite for Non-Autoregressive Neural Machine Translation

RewriteNAT This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressiv

Xinwei Geng 20 Dec 25, 2022
Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation

Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation Official Code Repository for the paper "Unsupervised Documen

NLP*CL Laboratory 2 Oct 26, 2021
Code voor mijn Master project omtrent VideoBERT

Code voor masterproef Deze repository bevat de code voor het project van mijn masterproef omtrent VideoBERT. De code in deze repository is gebaseerd o

35 Oct 18, 2021
Code for Discovering Topics in Long-tailed Corpora with Causal Intervention.

Code for Discovering Topics in Long-tailed Corpora with Causal Intervention ACL2021 Findings Usage 0. Prepare environment Requirements: python==3.6 te

Xiaobao Wu 8 Dec 16, 2022
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

Tencent 633 Dec 28, 2022
VampiresVsWerewolves - Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition

VampiresVsWerewolves Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition. Our Algorithm finish

Shawn 1 Jan 21, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recogniti

Soohwan Kim 26 Dec 14, 2022
Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.

Kashgari Overview | Performance | Installation | Documentation | Contributing 🎉 🎉 🎉 We released the 2.0.0 version with TF2 Support. 🎉 🎉 🎉 If you

Eliyar Eziz 2.3k Dec 29, 2022
Data manipulation and transformation for audio signal processing, powered by PyTorch

torchaudio: an audio library for PyTorch The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the

1.9k Jan 08, 2023
Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT.

KR-BERT-SimCSE Implementing SimCSE(paper, official repository) using TensorFlow 2 and KR-BERT. Training Unsupervised python train_unsupervised.py --mi

Jeong Ukjae 27 Dec 12, 2022