Open-World Entity Segmentation

Related tags

Text Data & NLPEntity
Overview

Open-World Entity Segmentation Project Website

Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia


This project provides an implementation for the paper "Open-World Entity Segmentation" based on Detectron2. Entity Segmentation is a segmentation task with the aim to segment everything in an image into semantically-meaningful regions without considering any category labels. Our entity segmentation models can perform exceptionally well in a cross-dataset setting where we use only COCO as the training dataset but we test the model on images from other datasets at inference time. Please refer to project website for more details and visualizations.


Installation

This project is based on Detectron2, which can be constructed as follows.

  • Install Detectron2 following the instructions. We are noting that our code is implemented in detectron2 commit version 28174e932c534f841195f02184dc67b941c65a67 and pytorch 1.8.
  • Setup the coco dataset including instance and panoptic annotations following the structure. The code of entity evaluation metric is saved in the file of modified_cocoapi. You can directly replace your compiled coco.py with modified_cocoapi/PythonAPI/pycocotools/coco.py.
  • Copy this project to /path/to/detectron2/projects/EntitySeg
  • Set the "find_unused_parameters=True" in distributed training of your own detectron2. You could modify it in detectron2/engine/defaults.py.

Data pre-processing

(1) Generate the entity information of each image by the instance and panoptic annotation. Please change the path of coco annotation files in the following code.

cd /path/to/detectron2/projects/EntitySeg/make_data
bash make_entity_mask.sh

(2) Change the generated entity information to the json files.

cd /path/to/detectron2/projects/EntitySeg/make_data
python3 entity_to_json.py

Training

To train model with 8 GPUs, run:

cd /path/to/detectron2
python3 projects/EntitySeg/train_net.py --config-file <projects/EntitySeg/configs/config.yaml> --num-gpus 8

For example, to launch entity segmentation training (1x schedule) with ResNet-50 backbone on 8 GPUs and save the model in the path "/data/entity_model". one should execute:

cd /path/to/detectron2
python3 projects/EntitySeg/train_net.py --config-file projects/EntitySeg/configs/entity_default.yaml --num-gpus 8 OUTPUT_DIR /data/entity_model

Evaluation

To evaluate a pre-trained model with 8 GPUs, run:

cd /path/to/detectron2
python3 projects/EntitySeg/train_net.py --config-file <config.yaml> --num-gpus 8 --eval-only MODEL.WEIGHTS model_checkpoint

Visualization

To visualize some image result of a pre-trained model, run:

cd /path/to/detectron2
python3 projects/EntitySeg/demo_result_and_vis.py --config-file <config.yaml> --input <input_path> --output <output_path> MODEL.WEIGHTS model_checkpoint MODEL.CONDINST.MASK_BRANCH.USE_MASK_RESCORE "True"

For example,

python3 projects/EntitySeg/demo_result_and_vis.py --config-file projects/EntitySeg/configs/entity_swin_lw7_1x.yaml --input /data/input/*.jpg --output /data/output MODEL.WEIGHTS /data/pretrained_model/R_50.pth MODEL.CONDINST.MASK_BRANCH.USE_MASK_RESCORE "True"

Pretrained weights of Swin Transformers

Use the tools/convert_swin_to_d2.py to convert the pretrained weights of Swin Transformers to the detectron2 format. For example,

pip install timm
wget https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth
python tools/convert_swin_to_d2.py swin_tiny_patch4_window7_224.pth swin_tiny_patch4_window7_224_trans.pth

Pretrained weights of Segformer Backbone

Use the tools/convert_mit_to_d2.py to convert the pretrained weights of SegFormer Backbone to the detectron2 format. For example,

pip install timm
python tools/convert_mit_to_d2.py mit_b0.pth mit_b0_trans.pth

Results

We provide the results of several pretrained models on COCO val set. It is easy to extend it to other backbones. We first describe the results of using CNN backbone.

Method Backbone Sched Entity AP download
Baseline R50 1x 28.3 model | metrics
Ours R50 1x 29.8 model | metrics
Ours R50 3x 31.8 model | metrics
Ours R101 1x 31.0 model | metrics
Ours R101 3x 33.2 model | metrics
Ours R101-DCNv2 3x 35.5 model | metrics

The results of using transformer backbone as follows.The Mask Rescore indicates that we use mask rescoring in inference by setting MODEL.CONDINST.MASK_BRANCH.USE_MASK_RESCORE to True.

Method Backbone Sched Entity AP Mask Rescore download
Ours Swin-T 1x 33.0 34.6 model | metrics
Ours Swin-L-W7 1x 37.8 39.3 model | metrics
Ours Swin-L-W7 3x 38.6 40.0 model | metrics
Ours Swin-L-W12 3x TBD TBD model | metrics
Ours MiT-b0 1x 28.8 30.4 model | metrics
Ours MiT-b2 1x 35.1 36.6 model | metrics
Ours MiT-b3 1x 36.9 38.5 model | metrics
Ours MiT-b5 1x 37.2 38.7 model | metrics
Ours MiT-b5 3x TBD TBD model | metrics

Citing Ours

Consider to cite Open-World Entity Segmentation if it helps your research.

@inprocedings{qi2021open,
  title={Open World Entity Segmentation},
  author={Lu Qi, Jason Kuen, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia},
  booktitle={arxiv},
  year={2021}
}
Owner
DV Lab
Deep Vision Lab
DV Lab
Help you discover excellent English projects and get rid of disturbing by other spoken language

GitHub English Top Charts 「Help you discover excellent English projects and get

GrowingGit 544 Jan 09, 2023
ASCEND Chinese-English code-switching dataset

ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong.

CAiRE 11 Dec 09, 2022
What are the best Systems? New Perspectives on NLP Benchmarking

What are the best Systems? New Perspectives on NLP Benchmarking In Machine Learning, a benchmark refers to an ensemble of datasets associated with one

Pierre Colombo 12 Nov 03, 2022
Creating a chess engine using GPT-3

GPT3Chess Creating a chess engine using GPT-3 Code for my article : https://towardsdatascience.com/gpt-3-play-chess-d123a96096a9 My game (white) vs GP

19 Dec 17, 2022
apple's universal binaries BUT MUCH WORSE (PRACTICAL SHITPOST) (NOT PRODUCTION READY)

hyperuniversality investment opportunity: what if we could run multiple architectures in a single file, again apple universal binaries, but worse how

luna 2 Oct 19, 2021
Generating Korean Slogans with phonetic and structural repetition

LexPOS_ko Generating Korean Slogans with phonetic and structural repetition Generating Slogans with Linguistic Features LexPOS is a sequence-to-sequen

Yeoun Yi 3 May 23, 2022
A sample project that exists for PyPUG's "Tutorial on Packaging and Distributing Projects"

A sample Python project A sample project that exists as an aid to the Python Packaging User Guide's Tutorial on Packaging and Distributing Projects. T

Python Packaging Authority 4.5k Dec 30, 2022
Unofficial Python library for using the Polish Wordnet (plWordNet / Słowosieć)

Polish Wordnet Python library Simple, easy-to-use and reasonably fast library for using the Słowosieć (also known as PlWordNet) - a lexico-semantic da

Max Adamski 12 Dec 23, 2022
Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API

gpt3-instruct-sandbox Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API Description This project updates an existing GPT-3 san

312 Jan 03, 2023
PyTorch implementation of NATSpeech: A Non-Autoregressive Text-to-Speech Framework

A Non-Autoregressive Text-to-Speech (NAR-TTS) framework, including official PyTorch implementation of PortaSpeech (NeurIPS 2021) and DiffSpeech (AAAI 2022)

760 Jan 03, 2023
Galois is an auto code completer for code editors (or any text editor) based on OpenAI GPT-2.

Galois is an auto code completer for code editors (or any text editor) based on OpenAI GPT-2. It is trained (finetuned) on a curated list of approximately 45K Python (~470MB) files gathered from the

Galois Autocompleter 91 Sep 23, 2022
A Python/Pytorch app for easily synthesising human voices

Voice Cloning App A Python/Pytorch app for easily synthesising human voices Documentation Discord Server Video guide Voice Sharing Hub FAQ's System Re

Ben Andrew 840 Jan 04, 2023
Sequence Modeling with Structured State Spaces

Structured State Spaces for Sequence Modeling This repository provides implementations and experiments for the following papers. S4 Efficiently Modeli

HazyResearch 902 Jan 06, 2023
Sploitus - Command line search tool for sploitus.com. Think searchsploit, but with more POCs

Sploitus Command line search tool for sploitus.com. Think searchsploit, but with

watchdog2000 5 Mar 07, 2022
Tool to add main subject to items on Wikidata using a WMFs CirrusSearch for named entity recognition or a manually supplied list of QIDs

ItemSubjector Tool made to add main subject statements to items based on the title using a home-brewed CirrusSearch-based Named Entity Recognition alg

Dennis Priskorn 9 Nov 17, 2022
Language-Agnostic SEntence Representations

LASER Language-Agnostic SEntence Representations LASER is a library to calculate and use multilingual sentence embeddings. NEWS 2019/11/08 CCMatrix is

Facebook Research 3.2k Jan 04, 2023
Perform sentiment analysis on textual data that people generally post on websites like social networks and movie review sites.

Sentiment Analyzer The goal of this project is to perform sentiment analysis on textual data that people generally post on websites like social networ

Madhusudan.C.S 53 Mar 01, 2022
Python functions for summarizing and improving voice dictation input.

Helpmespeak Help me speak uses Python functions for summarizing and improving voice dictation input. Get started with OpenAI gpt-3 OpenAI is a amazing

Margarita Humanitarian Foundation 6 Dec 17, 2022
基于Transformer的单模型、多尺度的VAE模型

UniVAE 基于Transformer的单模型、多尺度的VAE模型 介绍 https://kexue.fm/archives/8475 依赖 需要大于0.10.6版本的bert4keras(当前还没有推到pypi上,可以直接从GitHub上clone最新版)。 引用 @misc{univae,

苏剑林(Jianlin Su) 49 Aug 24, 2022
Code for PED: DETR For (Crowd) Pedestrian Detection

Code for PED: DETR For (Crowd) Pedestrian Detection

36 Sep 13, 2022