Topic Inference with Zeroshot models

Overview

zeroshot_topics

Table of Contents

Installation

zeroshot_topics is distributed on PyPI as a universal wheel and is available on Linux/macOS and Windows and supports Python 3.7+ and PyPy.

$ pip install zeroshot_topics

Usage

from zeroshot_topics import ZeroShotTopicFinder
zsmodel = ZeroShotTopicFinder()
text = """can you tell me anything else okay great tell me everything you know about George_Washington.
he was the first president he was well he I'm trying to well he fought in the Civil_War he was a general
in the Civil_War and chopped down his father's cherry tree when he was a little boy he that's it."""
zsmodel.find_topic(text)

License

zeroshot_topics is distributed under the terms of

You might also like...
This repo stores the codes for topic modeling on palliative care journals.

This repo stores the codes for topic modeling on palliative care journals. Data Preparation You first need to download the journal papers. bash 1_down

topic modeling on unstructured data in Space news articles retrieved from the Guardian (UK) newspaper using API
topic modeling on unstructured data in Space news articles retrieved from the Guardian (UK) newspaper using API

NLP Space News Topic Modeling Photos by nasa.gov (1, 2, 3, 4, 5) and extremetech.com Table of Contents Project Idea Data acquisition Primary data sour

Biterm Topic Model (BTM): modeling topics in short texts
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.
⚡ boost inference speed of T5 models by 5x & reduce the model size by 3x using fastT5.

Reduce T5 model size by 3X and increase the inference speed up to 5X. Install Usage Details Functionalities Benchmarks Onnx model Quantized onnx model

Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS)

Bidirectional Variational Inference for Non-Autoregressive Text-to-Speech (BVAE-TTS) Yoonhyung Lee, Joongbo Shin, Kyomin Jung Abstract: Although early

Source code for AAAI20 "Generating Persona Consistent Dialogues by Exploiting Natural Language Inference".

Generating Persona Consistent Dialogues by Exploiting Natural Language Inference Source code for RCDG model in AAAI20 Generating Persona Consistent Di

LightSeq: A High-Performance Inference Library for Sequence Processing and Generation
LightSeq: A High-Performance Inference Library for Sequence Processing and Generation

LightSeq is a high performance inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP models such as BERT, GPT2, Transformer, etc. It is therefore best useful for Machine Translation, Text Generation, Dialog, Language Modelling, and other related tasks using these models.

Spert NLP Relation Extraction API deployed with torchserve for inference

SpERT torchserve Spert_torchserve is the Relation Extraction model (SpERT)Span-based Entity and Relation Transformer API deployed with pytorch/serve.

A minimal code for fairseq vq-wav2vec model inference.

vq-wav2vec inference A minimal code for fairseq vq-wav2vec model inference. Runs without installing the fairseq toolkit and its dependencies. Usage ex

Comments
  • Error when I run the sample code

    Error when I run the sample code

    I get this when I try to run the sample code:

    Traceback (most recent call last): File "zerotopics.py", line 1, in from zeroshot_topics import ZeroShotTopicFinder File "/Users/scharlesworth/opt/anaconda3/envs/text_analytics/lib/python3.7/site-packages/zeroshot_topics/init.py", line 3, in from .zeroshot_tm import ZeroShotTopicFinder File "/Users/scharlesworth/opt/anaconda3/envs/text_analytics/lib/python3.7/site-packages/zeroshot_topics/zeroshot_tm.py", line 3, in from .utils import load_zeroshot_model File "/Users/scharlesworth/opt/anaconda3/envs/text_analytics/lib/python3.7/site-packages/zeroshot_topics/utils.py", line 6, in def load_zeroshot_model(model_name="valhalla/distilbart-mnli-12-6"): File "/Users/scharlesworth/opt/anaconda3/envs/text_analytics/lib/python3.7/functools.py", line 490, in lru_cache raise TypeError('Expected maxsize to be an integer or None') TypeError: Expected maxsize to be an integer or None

    Specifics: Python version 3.7.9

    pip freeze gives (yeh this virtualenv is getting big :):

    absl-py==1.0.0 aiohttp==3.8.1 aiosignal==1.2.0 alabaster==0.7.12 aniso8601==9.0.1 antlr4-python3-runtime==4.8 appnope @ file:///opt/concourse/worker/volumes/live/4f734db2-9ca8-4d8b-5b29-6ca15b4b4772/volume/appnope_1606859466979/work async-timeout==4.0.2 asynctest==0.13.0 attrs==20.3.0 Babel==2.9.1 backcall @ file:///home/ktietz/src/ci/backcall_1611930011877/work bertopic==0.6.0 blis @ file:///opt/concourse/worker/volumes/live/cd6a6bea-d063-4b62-4c10-fcc89b17d0ac/volume/cython-blis_1594246851083/work boto3==1.17.86 botocore==1.20.86 brotlipy==0.7.0 cachetools==4.2.1 catalogue==2.0.6 certifi==2020.12.5 cffi @ file:///opt/concourse/worker/volumes/live/2aa8abfe-8b8d-4889-78d9-837b74c3cd64/volume/cffi_1606255119410/work chardet @ file:///opt/concourse/worker/volumes/live/9efbf151-b45b-463d-6340-a5c399bf00b7/volume/chardet_1607706825988/work charset-normalizer==2.0.9 click==7.1.2 colorama==0.4.4 coloredlogs==15.0.1 commonmark==0.9.1 cryptography @ file:///opt/concourse/worker/volumes/live/41c3d62a-f1f8-46ce-414a-9adaf4ea7d96/volume/cryptography_1607636752064/work cycler==0.10.0 cymem @ file:///opt/concourse/worker/volumes/live/3e8d7428-f57d-4000-44e7-34ac8a744f13/volume/cymem_1605062299053/work Cython==0.29.23 dataclasses==0.6 datasets==1.17.0 decorator @ file:///home/ktietz/src/ci/decorator_1611930055503/work dill==0.3.4 docformatter==1.4 docutils==0.15.2 emoji==1.6.1 en-core-web-lg @ https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.2.0/en_core_web_lg-3.2.0-py3-none-any.whl en-core-web-md @ https://github.com/explosion/spacy-models/releases/download/en_core_web_md-3.2.0/en_core_web_md-3.2.0-py3-none-any.whl en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.2.0/en_core_web_sm-3.2.0-py3-none-any.whl en-core-web-trf @ https://github.com/explosion/spacy-models/releases/download/en_core_web_trf-3.2.0/en_core_web_trf-3.2.0-py3-none-any.whl et-xmlfile==1.1.0 fairscale==0.4.4 Faker==8.16.0 fasttext @ file:///Users/scharlesworth/fastText-0.9.2 filelock==3.0.12 flake8==4.0.1 flake8-bugbear==21.11.29 Flask==2.0.2 Flask-Cors==3.0.10 Flask-RESTful==0.3.9 frozenlist==1.2.0 fsspec==2021.11.1 future==0.18.2 gitdb==4.0.9 gitdb2==4.0.2 GitPython==3.1.24 google-api-core==1.26.2 google-api-python-client==2.0.2 google-auth==1.28.0 google-auth-httplib2==0.1.0 google-auth-oauthlib==0.4.6 googleapis-common-protos==1.53.0 grpcio==1.43.0 hdbscan==0.8.27 httplib2==0.19.0 huggingface-hub==0.2.1 humanfriendly==10.0 hydra-core==1.1.1 idna @ file:///tmp/build/80754af9/idna_1593446292537/work imagesize==1.3.0 importlib-metadata @ file:///tmp/build/80754af9/importlib-metadata_1602276842396/work importlib-resources==5.4.0 iniconfig==1.1.1 iopath==0.1.9 ipykernel @ file:///opt/concourse/worker/volumes/live/73e8766c-12c3-4f76-62a6-3dea9a7da5b7/volume/ipykernel_1596206701501/work/dist/ipykernel-5.3.4-py3-none-any.whl ipython @ file:///opt/concourse/worker/volumes/live/ac685347-76d6-4904-4b88-886c6a434f22/volume/ipython_1614616430264/work ipython-genutils @ file:///tmp/build/80754af9/ipython_genutils_1606773439826/work itsdangerous==2.0.1 jedi @ file:///opt/concourse/worker/volumes/live/5006b7b5-a924-4788-6cfe-ae05d8be8830/volume/jedi_1606932947370/work Jinja2==3.0.1 jmespath==0.10.0 joblib==1.0.1 jsonlines==3.0.0 jsonschema==3.0.2 jupyter-client @ file:///tmp/build/80754af9/jupyter_client_1601311786391/work jupyter-core @ file:///opt/concourse/worker/volumes/live/a699b83f-e941-4170-5136-bf87e3f37756/volume/jupyter_core_1612213304212/work keybert==0.5.0 kiwisolver==1.3.1 langcodes==3.3.0 llvmlite==0.36.0 loguru==0.5.3 Markdown==3.3.4 markdown-it-py==0.5.8 MarkupSafe==2.0.1 matplotlib==3.4.0 mccabe==0.6.1 mkl-fft==1.2.0 mkl-random==1.1.1 mkl-service==2.3.0 mock==4.0.3 multidict==5.2.0 multiprocess==0.70.12.2 murmurhash @ file:///opt/concourse/worker/volumes/live/9a0582f9-9097-4dab-6d7a-fcf62b4968ae/volume/murmurhash_1607456116622/work myst-parser==0.12.10 nltk==3.6.5 numba==0.53.1 numpy==1.20.2 oauthlib==3.1.1 omegaconf==2.1.1 openai==0.6.3 openpyxl==3.0.9 packaging==20.9 pandas==1.2.1 parlai==1.5.1 parquet==1.3.1 parso==0.7.0 pathy==0.6.1 pexpect @ file:///tmp/build/80754af9/pexpect_1605563209008/work pickleshare @ file:///tmp/build/80754af9/pickleshare_1606932040724/work Pillow==8.2.0 plac @ file:///opt/concourse/worker/volumes/live/a94b6881-2d18-4055-5a3c-f24036f05ef6/volume/plac_1594259982880/work pluggy==1.0.0 ply==3.11 portalocker==2.3.2 praw==7.1.0 prawcore==1.5.0 preshed @ file:///opt/concourse/worker/volumes/live/952fa955-acc7-4aa0-6766-86f802ea8ef1/volume/preshed_1608233410312/work prompt-toolkit @ file:///tmp/build/80754af9/prompt-toolkit_1616415428029/work protobuf==3.15.6 ptyprocess @ file:///tmp/build/80754af9/ptyprocess_1609355006118/work/dist/ptyprocess-0.7.0-py2.py3-none-any.whl py==1.11.0 py-gfm==1.0.2 py-rouge==1.1 py4j==0.10.7 pyarrow==6.0.1 pyasn1==0.4.8 pyasn1-modules==0.2.8 pybind11==2.6.1 pycodestyle==2.8.0 pycparser @ file:///tmp/build/80754af9/pycparser_1594388511720/work pydantic==1.8.2 pyee==8.2.2 pyflakes==2.4.0 Pygments @ file:///tmp/build/80754af9/pygments_1615143339740/work PyJWT==2.3.0 pynndescent==0.5.2 pyodbc==4.0.32 pyOpenSSL @ file:///tmp/build/80754af9/pyopenssl_1608057966937/work pyparsing==2.4.7 pyrsistent @ file:///opt/concourse/worker/volumes/live/656e0c1b-ef87-4251-4a51-1290b2351993/volume/pyrsistent_1600141745371/work PySocks @ file:///opt/concourse/worker/volumes/live/ef943889-94fc-4539-798d-461c60b77804/volume/pysocks_1605305801690/work pytest==6.2.5 pytest-datadir==1.3.1 pytest-regressions==2.2.0 python-dateutil @ file:///home/ktietz/src/ci/python-dateutil_1611928101742/work python-slugify==5.0.2 pytorch-transformers==1.2.0 pytz==2020.5 PyYAML==6.0 pyzmq==20.0.0 regex==2021.11.10 requests @ file:///tmp/build/80754af9/requests_1608241421344/work requests-mock==1.9.3 requests-oauthlib==1.3.0 requests-toolbelt==0.9.1 rich==10.16.2 rsa==4.7.2 s3transfer==0.4.2 sacremoses==0.0.44 scikit-learn==0.24.1 scipy==1.6.2 seaborn==0.11.1 sentence-transformers==1.0.4 sentencepiece==0.1.91 seqeval==0.0.5 sh==1.14.2 six @ file:///opt/concourse/worker/volumes/live/f983ba11-c9fe-4dff-7ce7-d89b95b09771/volume/six_1605205318156/work sklearn==0.0 slack-bolt==1.11.1 slack-sdk==3.13.0 slackclient==2.9.3 slackeventsapi==3.0.1 smart-open==5.2.1 smmap==5.0.0 snowballstemmer==2.2.0 spacy==3.2.0 spacy-alignments==0.8.4 spacy-legacy==3.0.8 spacy-loggers==1.0.1 spacy-sentence-bert==0.1.2 spacy-transformers==1.1.2 spark-nlp==3.0.2 Sphinx==2.2.2 sphinx-autodoc-typehints==1.10.3 sphinx-rtd-theme==1.0.0 sphinxcontrib-applehelp==1.0.2 sphinxcontrib-devhelp==1.0.2 sphinxcontrib-htmlhelp==2.0.0 sphinxcontrib-jsmath==1.0.1 sphinxcontrib-qthelp==1.0.3 sphinxcontrib-serializinghtml==1.1.5 srsly==2.4.2 subword-nmt==0.3.8 tensorboard==2.7.0 tensorboard-data-server==0.6.1 tensorboard-plugin-wit==1.8.0 tensorboardX==2.4.1 text-unidecode==1.3 thinc==8.0.13 threadpoolctl==2.1.0 thriftpy2==0.4.14 tokenizers==0.10.2 toml==0.10.2 torch==1.10.1 torchtext==0.11.1 tornado @ file:///opt/concourse/worker/volumes/live/d531d395-893c-4ca1-6a5f-717b318eb08c/volume/tornado_1606942307627/work tqdm==4.62.3 traitlets @ file:///home/ktietz/src/ci/traitlets_1611929699868/work transformers==4.11.0 typer==0.4.0 typing-extensions==3.7.4.3 umap-learn==0.5.1 Unidecode==1.3.2 untokenize==0.1.1 update-checker==0.18.0 uritemplate==3.0.1 urllib3==1.26.7 wasabi==0.8.2 wcwidth @ file:///tmp/build/80754af9/wcwidth_1593447189090/work webexteamsbot==0.1.4.2 webexteamssdk==1.6 websocket-client==0.57.0 websocket-server==0.6.4 Werkzeug==2.0.1 xlrd==2.0.1 xxhash==2.0.2 yarl==1.7.2 zeroshot-topics==0.1.0 zipp @ file:///tmp/build/80754af9/zipp_1604001098328/work

    opened by sdcharle 1
  • Add size to lru_cache

    Add size to lru_cache

    /usr/local/lib/python3.7/dist-packages/zeroshot_topics/__init__.py in <module>()
          1 __version__ = '0.1.0'
          2 
    ----> 3 from .zeroshot_tm import ZeroShotTopicFinder
    
    /usr/local/lib/python3.7/dist-packages/zeroshot_topics/zeroshot_tm.py in <module>()
          1 import attr
          2 from keybert import KeyBERT
    ----> 3 from .utils import load_zeroshot_model
          4 from nltk.corpus import wordnet as wn
          5 
    
    /usr/local/lib/python3.7/dist-packages/zeroshot_topics/utils.py in <module>()
          4 
          5 @lru_cache
    ----> 6 def load_zeroshot_model(model_name="valhalla/distilbart-mnli-12-6"):
          7     classifier = pipeline("zero-shot-classification", model=model_name)
          8     return classifier
    
    /usr/lib/python3.7/functools.py in lru_cache(maxsize, typed)
        488             maxsize = 0
        489     elif maxsize is not None:
    --> 490         raise TypeError('Expected maxsize to be an integer or None')
        491 
        492     def decorating_function(user_function):
    
    TypeError: Expected maxsize to be an integer or None
    

    I assume that you have to provide, maxsize parameter to lru_cache. Worked for me, when I provided the parameter.

    opened by gsasikiran 6
Releases(v.0.0.1)
Owner
Rita Anjana
ML engineer
Rita Anjana
Weakly-supervised Text Classification Based on Keyword Graph

Weakly-supervised Text Classification Based on Keyword Graph How to run? Download data Our dataset follows previous works. For long texts, we follow C

Hello_World 20 Dec 29, 2022
Contains the code and data for our #ICSE2022 paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences"

CodeFill This repository contains the code for our paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Namin

Software Analytics Lab 11 Oct 31, 2022
Translation to python of Chris Sims' optimization function

pycsminwel This is a locol minimization algorithm. Uses a quasi-Newton method with BFGS update of the estimated inverse hessian. It is robust against

Gustavo Amarante 1 Mar 21, 2022
Ecco is a python library for exploring and explaining Natural Language Processing models using interactive visualizations.

Visualize, analyze, and explore NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BER

Jay Alammar 1.6k Dec 25, 2022
Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch

N-Grammer - Pytorch Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch Install $ pip install n-grammer-pytorch Usage

Phil Wang 66 Dec 29, 2022
Perform sentiment analysis and keyword extraction on Craigslist listings

craiglist-helper synopsis Perform sentiment analysis and keyword extraction on Craigslist listings Background I love Craigslist. I've found most of my

Mark Musil 1 Nov 08, 2021
Segmenter - Transformer for Semantic Segmentation

Segmenter - Transformer for Semantic Segmentation

592 Dec 27, 2022
APEACH: Attacking Pejorative Expressions with Analysis on Crowd-generated Hate Speech Evaluation Datasets

APEACH - Korean Hate Speech Evaluation Datasets APEACH is the first crowd-generated Korean evaluation dataset for hate speech detection. Sentences of

Kevin-Yang 70 Dec 06, 2022
Implementation of paper Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoBERTa.

RoBERTaABSA This repo contains the code for NAACL 2021 paper titled Does syntax matter? A strong baseline for Aspect-based Sentiment Analysis with RoB

106 Nov 28, 2022
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT This repo provides the code for reproducing the experiments in CodeBERT: A Pre-Trained Model for Programming and Natural Languages. CodeBERT

Microsoft 1k Jan 03, 2023
LCG T-TEST USING EUCLIDEAN METHOD

This project has been created for statistical usage, purposing for determining ATL takers and nontakers using LCG ttest and Euclidean Method, especially for internal business case in Telkomsel.

2 Jan 21, 2022
Code for ACL 2021 main conference paper "Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances".

Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances This repository contains the code and pre-trained mode

ICTNLP 90 Dec 27, 2022
Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph",

K-BERT Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph", which is implemented based on the UER framework. R

Weijie Liu 834 Jan 09, 2023
The NewSHead dataset is a multi-doc headline dataset used in NHNet for training a headline summarization model.

This repository contains the raw dataset used in NHNet [1] for the task of News Story Headline Generation. The code of data processing and training is available under Tensorflow Models - NHNet.

Google Research Datasets 31 Jul 15, 2022
Which Apple Keeps Which Doctor Away? Colorful Word Representations with Visual Oracles

Which Apple Keeps Which Doctor Away? Colorful Word Representations with Visual Oracles (TASLP 2022)

Zhuosheng Zhang 3 Apr 14, 2022
Recognition of 38 speech commands in russian. Based on Yandex Cup 2021 ML Challenge: ASR

Speech_38_ru_commands Recognition of 38 speech commands in russian. Based on Yandex Cup 2021 ML Challenge: ASR Программа умеет распознавать 38 ключевы

Andrey 9 May 05, 2022
Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Implementation / replication of DALL-E, OpenAI's Text to Image Transformer, in Pytorch

Phil Wang 5k Jan 02, 2023
Model parallel transformers in JAX and Haiku

Table of contents Mesh Transformer JAX Updates Pretrained Models GPT-J-6B Links Acknowledgments License Model Details Zero-Shot Evaluations Architectu

Ben Wang 4.9k Jan 04, 2023
Problem: Given a nepali news find the category of the news

Classification of category of nepali news catorgory using different algorithms Problem: Multiclass Classification Approaches: TFIDF for vectorization

pudasainishushant 2 Jan 09, 2022